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Project Overview 
 

Predictive algorithms derived from big databases have been used in 

homeland security threat assessment of individuals, such as whether or not 

to subject an aviation passenger to heightened passenger screening or 

whether or not to add a person to a “watch list” or “no fly list.” Ultimately, 

the results of such predictive algorithms must be translated into decisions 

regarding whether to classify an individual as dangerous or non-dangerous. 

Regardless of how accurate the algorithm might be, the distributions of 

dangerous and non-dangerous individuals will overlap on the predictive 

index.  

In order to use the predictive index for decision making, a threshold must 

be established in order to allow individuals to be classified as either 

dangerous or non-dangerous (Swets, 1992; Swets, Dawes & Monahan, 

2000). Fundamentally, specifying this threshold involves a tradeoff between 

the possibility of misclassifying a non-dangerous individual as dangerous 

(i.e., a false positive error) and misclassifying a dangerous individual as non-

dangerous (i.e., a false negative error). It is important to note that 

misclassification is inevitable when decisions are made under the condition 

of uncertainty and on the basis of limited and imperfect information, as is 

nearly always the case, and particularly so in security contexts.  

We propose the use of a framework – Signal Detection Theory – to reify 

this tradeoff, and to demonstrate its applicability and develop a template for 

its use in the context of aviation security. Signal Detection Theory (SDT) was 

initially developed to use in conjunction with radar in World War II 

(Peterson, Birdsall, & Fox, 1954). It has since been used in a variety of 

fields, such as engineering, psychometrics, forensic science, and medicine 

(Egan, 1975; Green & Swets, 1966; Swets & Pickett, 1982; Wickens, 2002; 

Scurich & John, 2010, 2012). One component of the SDT model is the 

inevitable tradeoff between false positive and false negative classification 

errors. Specifying an acceptable tradeoff is an inherently subjective value 

judgment. Once specified, SDT provides the machinery to combine this 

tradeoff with other relevant components such as the base rate of the target 

event and the predictive efficiency of the algorithm.   

There are two fundamental objectives of this project:  

1. To elucidate the Signal Detection Theory framework, and demonstrate 

how it can be used coherently to make decisions regarding the provision of 

security measures to aviation passengers. The current decision-making 
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process used by aviation security officials makes implicit assumptions about 

a tolerable value tradeoff; these assumptions may neither optimize safety 

nor be acceptable to all stakeholders (see Scurich & John, 2014; Gigerenzer, 

2004), and they may not be combined to yield the optimal solution. SDT 

provides an analytic framework to evaluate such decisions, and can used to 

derive an optimal security threshold for aviation security using any 

predictive index. 

2. To construct a template software tool that will allow the SDT model to 

be applied in any context involving a predictive index designed to result in a 

binary classification. Such a tool will enable policy makers to explore the 

implications of setting different thresholds, conditional on different tradeoffs, 

base rates, and predictive efficiencies.  

 

Primer on Signal Detection Theory 
 

In May 2019 the authors of this report gave a training workshop to 

members of the Department of Homeland Security (DHS) and other federal 

stakeholders on the application SDT to security screening. What follows in 

this section is a “nuts and bolts” description of what we shared with this 

group on how to carry out an empirical-based application of SDT to security 

assessments.  

The process begins with identifying the criterion to be predicted, in this 

context, riskiness of a passenger. In the case of binary classification, two 

populations of interest that might differ on the distribution of the criterion 

(e.g., low risk passengers versus moderate-to-high risk passengers) have to 

be selected. Membership in each of these population needs to be identified 

(e.g., FBI reports of suspicious activity or not) (see Basuchoudhary, & 

Razzolini, 2006). Next comes the calculation of sensitivity and specificity for 

each cutoff level (e.g., risk score), ROC curve and optimal cutoff point 

(Swets, 1986). How this is done will be illustrated in following sections. 

Having selected the prediction criterion and corresponding populations, a 

sample needs to be drawn from each population. It makes sense to sample 

from these populations proportional to their membership size. For example, 

first sample from a FBI list of those in which no suspicious behavior has been 

reported and call then Low Risk Passenger (LR). Likewise, sample from a FBI 

list of those in which suspicious behavior has been reported and call them 

Moderate-to-High Risk Passenger (MHR). For all potential passengers assign 
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a risk score (e.g. 1-10) based on a set of predictor variables that are readily 

identifiable and assessable (e.g. frequent flyer, age). At this point, each 

passenger in this assessment should be a member of either the Low Risk or 

the Moderate-to-High Risk groups and should have a risk score. 

The following table illustrations what a potential data set might look like. 

 

Using the (hypothetical) data in the table above, it is possible to calculate 

sensitivity (i.e., the true positive rate), specificity (i.e., the true negative 

rate), the false positive rate, and the false negative rate.  Using the sum of 

sensitivity and specific allows for the determination of an optimal cutoff 

point, in this case a risk score of 7. The following table illustrates these 

calculations for each of the possible risk scores 1-10. 
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Using the calculations in the above table, an empirical ROC curve can now 

be constructed. The false positive rate (horizontal axis) can be plotted 

against measures of sensitivity (vertical axis) to create a ROC curve. A 

decision threshold at any given point on the curve reflects a particular 

tradeoff between sensitivity and specificity. For example, using group 7 as a 

cut point (meaning any score greater than or equal to 7 results in an 

affirmative decision) results in a value of sensitivity of 70% and a false 

positive rate (1-specificty) of 18.3%. As a general matter, the point on the 

curve closest to the upper left most point on the graph represents the 

optimal cutoff point. Please see the following graph as an illustration.  
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There are a number of practical questions that can be addressed with the 

above approach and calculations: (1) How do we know which training 

approach works best?; (2) How can the skill (e.g., detection of a prohibited 

item during x-ray screening or a pat down) of a particular individual be 

assessed?; (3) How do we know whether an individual’s or a team’s 

performance is improving over time?; and (4) How can we assess the 

relative difficulty of judgment of one task versus another?  

Answers to the above questions can be obtained by tracking the 

sensitivity, specificity and ROC curves across training approaches, 

individuals and tasks. Likewise, these measures can be tracked over time as 

well. 

While collecting needed data and computing relevant metrics is straight 

forward this kind of assessment is not without its challenges. For example, 

finding validation data such as the FBI suspicious behavior list mentioned 

above might prove difficult. Certainly, this step requires thought and time 

(see Sandler, & Enders, 2007). Additionally, an assessment of the relative 
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costs of false positives and false negatives needs to be thought about 

carefully to determine optimal classification thresholds.  

 

An Application to Aviation Security 
 

The TSA has a portfolio of counter measures that are designed to identify 

adversaries. Some of these measures are pictorially represented in the 

Figure below: 

 

Source: GAO-17-794 at 6. 

The red circle includes frontend measures that are designed to identify 

potential adversaries right after they purchase their ticket. This involves 

searching passenger names against lists of known adversaries or persons of 

interest. It also involves a passenger prescreening procedure known as 

“Secure Flight” that is used to assess the risk of passengers. The following 

passage describes how Secure Flight is used: 
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Source: GAO-17-794 at 7-8. 

Passengers will be subject to different levels of security measures 

depending on their risk as determined by Secure Flight. Passengers deemed 

“high risk” will experience heightened security measures. Passengers 

deemed “low risk” may receive expedited security screening, sometimes 

referred to as “Pre-Check,” and passengers in the middle category will be 

subject to the standard security screening measures.  

There has been much interest in identifying low risk passengers. Low 

risk passengers require fewer screening resources, and thus can increase 

operational efficiency and reduce lines and wait times at the normal security 

ques. There are roughly two ways to be designated as low risk: first, known 

travelers, such as those registered with TSA precheck or Global Entry, will 

typically – but not always - obtain a low risk designation; second, by 

accumulating points from Secure Flight such that some pre-determined 

amount of points is sufficient to designate the passenger as a sufficiently low 

risk to accord her expedited security screening. This process is pictorially 

represented below:  
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It is important to stress that this pictorial representation, including the 

values contained in the plot, is completely hypothetical. However, it does 

provide a rough illustration of the process by which an unknown passenger 

gets designated as “low risk.”  

Secure Flight is used to accord passengers with points. This project 

does not examine the process by which Secure Flight delegates points. That 

is sensitive information. Rather, the current project focuses on how to set a 

threshold such that a specific number of points is sufficient to designate the 

passenger as low risk and thus receive expediated screening. In other 

words, where to set the “low risk” threshold.  

This would seem to be a simple application of SDT, in which the low 

risk threshold is set based upon an appropriate tradeoff between false 

positive and false negative errors. However, as we began working with 

Subject Matter Experts at the Transportation Security Authority (TSA), we 

learned that a different approach was used. Rather than a hard-cut point or 
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threshold, the TSA uses a probabilistic approach to select passengers for the 

low risk designation. This process is pictorially illustrated below:  

 

 

 

It is important to stress that this pictorial representation, including the 

values contained in the plot, is also completely hypothetical. 

As depicted above, passengers get a risk score from Secure Flight. 

These scores are depicted by the gray bars. There is then some probability 

that an individual with a given risk score will be selected for precheck. This 

probability is not equally distributed across risk scores. Passengers in lower 

risk groups (e.g., those with 10 points) have a higher probability of being 

selected for expedited screening than relatively higher risk passengers (e.g., 

those with 1 point).   

The use of a probabilistic selection process rather than a hard-cut 

point or threshold is based on a deterrence rationale (Ridinger, John, 

McBride, & Scurich, 2016). The idea is to mitigate the possibility that 

adversaries would be able to detect and exploit observable patterns. For 

instance, (hypothetically) an adversary could observed that individuals with 

a risk score of 10 always get selected for expediated screening and thus 

they might try to exploit a passenger with a 10 risk score (setting aside the 

fact that passengers never learn their risk scores); if passengers with a risk 
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score of 10 sometimes receive expedited screening and sometimes do not, 

then it would be less appealing to attempt to exploit such passengers in an 

effort to gain expedited security screening. 

 The probabilistic selection model described above adds complexity to 

the application of SDT to this decision problem, but nevertheless, the same 

principles of SDT can be used to select low risk passengers. A description of 

this model follows.   

 

The Use of Signal Detection Theory to Select Low Risk Aviation 

Passengers 
 

We apply SDT to the problem of identifying low-risk passengers from the 

population of unknown passengers using information available at the time of 

screening. These unknown passengers have not been vetted and have not 

provided any information beyond that available in the Secure Flight 

database, e.g., sex, age, etc. Our application of SDT and analysis assumes a 

continuous risk score for each passenger, but does not address how this 

score is formulated from available data. For demonstration purposes, we 

assume that the risk scores are normally distributed with equal variance for 

both unknown and low-risk passengers, and that higher risk scores indicate 

lower risk. We demonstrate how SDT would be applied to identify an optimal 

threshold (cut-point) in which passengers with scores above that threshold 

are assigned to an expedited screening process that is quicker than general 

unknown passenger screening. The optimal threshold depends on three 

variables that characterize the specific passenger screening environment 

(Lynn & Barrett, 2014): 

1. Diagnosticity of the risk score, expressed as the normalized 

difference in the distribution means, d’ (Kadlec, 1999). 

2. Base-rate of passengers who should not be selected for expedited 

screening, expressed as an odds ratio, p(~low-risk)/p(low-risk) 

3. Relative costs of errors, expressed as the ratio of the cost of false 

positives (select for expedited screening when not low-risk) to the 

cost of false negatives (do not select for expedited screening when 

low-risk). 

     Calculation of the optimal Beta is given in Equation 1 (Swets & Pickett, 

2002, p. 40): 
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Beta-optimal =cost(false-positive)/cost(false-negative) * p(non low-

risk)/p(low-risk) 

We provide an Excel spreadsheet that uses these three input variables to 

calculate the optimal threshold in standardized risk score units and in raw 

risk score values. This spreadsheet allows for a custom calculation of the 

optimal threshold that tailors the cut-off to the diagnosticity of the risk score 

utilized, the estimated base-rate of low-risk passengers, and the relative 

costs of misclassification of passengers. This flexibility is important since the 

risk score may change as more diagnostic data sources are identified and 

utilized. Likewise, it is important to allow the optimal beta to vary depending 

on the base-rate of passengers for whom expedited screening is appropriate. 

Flexibility to tailor the optimal cut-off to the base-rate of low-risk passengers 

is particularly important, since the proportion of low-risk passengers is 

expected to vary over time and by location.  

     We present an example calculation of error rates as a function of the 

diagnosticity of the risk score, d’, assuming that the base-rate of low-risk 

passengers is 50% (odds ratio =1) and the cost of miss-classification is the 

same for false-positives and false-negatives. In this case, the optimal 

threshold (Beta = 1.0) is at the mid-point of the means of the two (equal 

variance) normal distributions, which is at the point in which the normal 

density functions intersect.  This calculation generalizes to all cases in which 

the penalty ratio for mis-classification is the reciprocal of the odds ratio, 

which results in optimal Beta = 1.0. For example, optimal Beta = 1.0 if the 

penalty for classifying a non low-risk passenger as low-risk(expedited 

screening) is 3 times the penalty for classifying a low-risk passenger as not 

low-risk (standard unknown screening), and the proportion of low-risk 

passengers is 25% (odds ratio of 0.25/0.75 = 1/3).  

     Figure 1 plots error rates, necessarily equal for Optimal Beta = 1.0, as a 

function of d’. Error rates vary from 50% (random selection, non-diagnostic 

risk score) to about 30% (moderate diagnosticity, d’=1.0) to about 15% 

(high diagnosticity, d’=2.0). In order to reach error rates approaching 5%, a 

d’ of over 3.0 is required, and a d’ greater than 4.5 is required to achieve 

error rates of 1%. This analysis demonstrates the extreme sensitivity of 

error rates to the diagnosticity of the risk score, d’, under one set of 

conditions (optimal Beta = 1.0).  
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Figure 1. Error rates as a function of d’ for optimal Beta = 1.0. 
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     At present, we do not have data to accurately estimate the diagnosticity 

of the risk scores currently in use to select passengers for expedited 

screening (see Dankiewicz, 2012). For comparison purposes, Table 1 

presents reported d’ values for a wide range of diagnostic tests used for 

various classification purposes. Typical d’ values for commonly used 

diagnostic tests are between 1.0 and 2.0; d’ values of 3.0 or greater are 

rarely reported. These values provide reference points for gauging the 

diagnositicy of current and future risk scores. 

 

Table 1. Typical d’ values reported in the literature for various diagnostic 

tests (from Arkes & Mellers, 2002). 

        

Legal Domain 
 

Polygraphs 
     1.5-2.3 (Swets, 1996) 

     2.7 (Raskin and Honts, 2000) 
Eyewitness Facial ID     0.8 (Shapiro and Penrod, 1986) 

  
 

Medical Domain 
 

Cervical Cancer testing 
     1.6 (Experts) 

     1.8 (Algorithmic) 

Prostate Cancer PSA testing   2.0 
     

Other Domains 
Weather forecasting 

Rain in Chicago     1.5   
Minimum Temperature Albuquerque 1.7  

Tornados      1.0  
Fog forecasts Canberra airport  0.8-1.2  

Job Success for Navy personnel selection 0.6-0.8 

(Armed Forces Qualification Test) 

      

 

     Explicit consideration of the relative costs of false-positive and false-

negative errors can be avoided by selecting a fixed level of either type of 

error. In the present context, it is natural to consider a fixed false-positive 

error rate (i.e., classifying as low-risk when not low-risk), and calculating the 
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implied level of false-negatives (i.e., classifying as not low-risk when low-

risk), contingent on the diagnosticity of the risk score, d’. Figure 2 plots 

false-positive rate as a function of d’ for 6 different values of false-negative 

rate, ranging from 1 in ten to 1 in a million by powers of 10. This analysis 

suggests that even for modest aspirations for false-positive rates (ranging 

from 10% to 1%), moderately diagnostic risk scores (d’=1.0) will result in 

relatively high false-negative rates, ranging from 60% for 10% false-positive 

rate to 90% for a 1% false positive rate. For highly diagnostic risk scores, d’ 

= 2.0, false negative rates are cut to between 23% and 62% for false 

positive rates of 10% and 1%, respectively.  

 

 

Figure 2. False-negative error rate by d’ and fixed false-positive error rates, assuming use 

of an optimal cut-point for the threshold, Beta. 
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Figure 2 demonstrates that many low-risk passengers will be required to 

undergo the standard screening for unknown passengers in order to control 

the rate of non low-risk passengers selected for expedited screening. Even 

with extremely high d’ values (above 3.0), fixing false-positive rates below 

1% will likely result in high false positive rates, and very few passengers 

selected for expedited screening. The likelihood of misclassification is highly 

dependent on d’. These analyses highlight the importance of accurate 

estimation of the diagnosticity of the risk score, d’.  

     The sensitivity analyses presented in Figures 1 and 2 assume optimal 

selection of the cut-point, Beta. In the absence of an accurate estimate of d’, 

selection of Beta is unlikely to be optimal, and misclassification rates will 

necessarily be greater than those plotted in Figures 1 and 2. 

Understandably, cut-points on the risk score may be determined without a 

formal estimate of the optimal threshold, and adjusted up or down based on 

operational variables, such as passenger volume and staffing availability. We 

conducted a sensitivity analysis to assess the expected cost of applying a 

threshold either less than or greater than the optimal Beta. In these 

analyses, we assumed that the optimal Beta is 1.0, which holds when the 

base-rate of low-risk passengers is 50% and false-positives and false-

negatives are equally costly. In this special case of Optimal Beta = 1.0, the 

expected cost is the average of the false-positive and false-negative rates.  

     Figures 3-6 display the results of these sensitivity analyses for d’ values 

of 0.50, 1.0, 2.0, and 3.0, assuming normal distributions with equal variance 

for both the low-risk and non low-risk unknown passengers. The optimal cut-

point in each case is equal to half the value of d’, since the non low-risk 

passenger distribution is centered at 0.0 and the low-risk distribution mean 

is equal to d’. In each case, the lowest expected cost corresponds to the 

optimal cut-point, and equals the same values plotted in Figure 1 under the 

same assumptions, i.e., 0.40, 0.31, 0.16, and 0.07 for d’ = 0.5, 1.0, 2.0, 

and 3.0, respectively. As the cut-point choice deviates from the optimal Beta 

value, the expected cost approaches the worst case value of 0.50, 

corresponding to selecting all passengers as either low-risk or non low-risk, 

again assuming that they are equally likely and the cost of each false-

positive and each false-negative is fixed at 1.0.  

     The values plotted are the expected (relative) cost per unknown 

passenger screened. It is important to note that the expected costs increase 

more steeply for more diagnostic risk score measures (d’=2.0 or 3.0) than 

for risk scores that that are less predictive (d’=0.5 or 1.0). That is, it is more 

important to determine the optimal cut-point for more valid risk scores than 



18 
 

for less valid risk scores. Clearly, misspecification of the cut-point for 

identifying low-risk passengers from the population of unknown passengers 

is potentially costly on a per passenger basis; these expected costs are of 

course multiplied by the millions of unknown passengers screened each year 

and the actual dollar cost per passenger, now represented as 1 unit for 

purposes of this analysis. 

     In some cases, there may be good reasons related to operational 

efficiency to deviate from the Optimal Beta. For example, small deviations 

may be preferred if the expected costs are small compared to the cost of 

maintaining the fixed Optimal Beta across passenger volumes that vary by 

hour of the day, by day of the week, and by week of the year. Explicit 

estimation of d’ and optimal Beta allows for such trade-offs to be carefully 

considered and weighed against the expected costs of greater false-positives 

and/or false-negatives.  

 

Figure 3. Expected cost per passenger of applying various cut-points (Beta) for d’=0.50, 

Optimal Beta = 1.0, Optimal threshold = 0.25  (normal distributions with equal variance). 
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Figure 4. Expected cost per passenger of applying various cut-points (Beta) for d’=1.0, 

Optimal Beta = 1.0, Optimal threshold = 0.5  (normal distributions with equal variance). 
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Figure 5. Expected cost per passenger of applying various cut-points (Beta) for d’=2.0, 

Optimal Beta = 1.0, Optimal threshold = 1.0 (normal distributions with equal variance). 
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Figure 6. Expected cost per passenger of applying various cut-points (Beta) for d’=3.0, 

Optimal Beta = 1.0, Optimal threshold = 1.5 (normal distributions with equal variance). 
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     We conducted a sensitivity analysis to assess the magnitude of additional 

expected costs from randomization. The curves in Figure 7 display seven 

different randomization strategies for the case of optimal Beta = 1.0, 

centered at the optimal cut-point (midpoint between distribution means). 

The optimal strategy is to classify all passengers above the midpoint as low-

risk and assign to expedited screening, and classify all passengers below the 

midpoint as non low-risk and assign to usual unknown passenger screening. 

Note that the optimal threshold value is the point where all of the probability 

curves intersect in Figure 7, representing a 50-50 probability of assigning to 

expedited screening at the cut-point for all 7 randomization strategies.  

     These seven curves all represent various levels of randomization (based 

on a logistic function) in which the probability of classification as low-risk 

and assignment to expedited screening is monotonically increasing with risk 

score. The steepest curve represents a strategy that most closely 

approximates the strict threshold prescribed by SDT, but does randomize for 

risk scores very close to the threshold value, the midpoint between the 

means of the 2 distributions means. As the curves become less steep, 

greater randomization is utilized; however, the probability of expedited 

screening is always monotonically increasing with risk score. The steepest 

logistic curves most nearly approximate the strict threshold approach 

prescribed by SDT, and result in expected cost closest to the minimum when 

using the optimal Beta threshold and applying a non-randomization strategy. 

Flatter curves that deviate from the strict threshold approach would be 

expected to result in relatively greater expected costs, although they would 

be less predictable to an adaptive adversary who would prefer assurance of 

expedited screening based on an anticipated risk score.  

     Although data regarding randomization based on risk scores was not 

available for this study, we believe that these seven strategies encompass 

the range of practical randomization implementation. The most realistic 

strategies are the three middle curves in Figure 7. That is, the two steepest 

curves involve very little randomization and thus would not achieve 

deterrence objectives, while the two flattest curves randomize to such an 

extent that the risk score plays a greatly attenuated role in determining 

whether a passenger receives expedited screening. Any practical use of 

randomization is likely represented by one of the three middle curves in 

Figure 7.  
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Figure 7. Probability of selection for expedited screening conditional on risk score for 

seven (logit) randomization strategies centered at optimal cut-point, Beta=1.  
 

     We conducted a sensitivity analysis for these seven hypothetical 

randomization strategies to determine the magnitude of expected costs 

(increased false-positives and false-negatives) as a function of the extent of 

randomization utilized. Figures 8-11 summarize expected costs for the case 

of optimal Beta = 1.0, varying risk score diagnosticity, d’=0.50, 1.0, 2.0, 

and 3.0. The horizontal lines in all 4 figures represent the minimum possible 

expected cost for applying the strict threshold at the optimal cut-point with 

no randomization. Regardless of diagnosticity, d’, the additional expected 

costs for the two steepest randomization curves (logistic parameters, 8 and 

16 in Figure 7) are quite low, as the expected costs are quite close to 

applying a strict threshold (horizontal line). As the logistic parameter 

decreases and the randomization curve from Figure 7 becomes flatter, 

expected cost increase and approach the maximum expected cost resulting 

from complete random assignment, 0.50. In the case of moderate 

diagnosticity (d’=1, Figure 9), the flattest randomization curve (logistic 
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parameter = 0.25, Figure 7), expected cost increase over 50%, from 0.31 to 

about 0.47, which is very close to the maximum cost of 0.50 resulting from 

completely random selection for expedited screening. The middle three 

curves (logistic parameters 1, 2, and 4, Figure 7) result in modest increases 

in expected cost, ranging from about 10% increase (logistic parameter = 4) 

to about 30% increase (logistic parameter = 1).  

 

Figure 8. Expected costs (false-positives and false-negatives) by randomization, d’=0.50, 

Optimal Beta = 1.0, Optimal Threshold Z = 0.25. Lower values of the logistic curve 

parameter result in more randomization (completely random = 0); higher values of the 

logistic curve parameter result in less randomization, i.e., approaching SDT strict 

threshold, 0.40, represented by horizontal line. 
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Figure 9. Expected costs (false-positives and false-negatives) by randomization, d’=1.0, 

Optimal Beta = 1.0, Optimal Threshold Z = 0.50. Lower values of the logistic curve 

parameter result in more randomization (completely random = 0); higher values of the 

logistic curve parameter result in less randomization, i.e., approaching SDT strict 

threshold, 0.31, represented by horizontal line. 
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Figure 10. Expected costs (false-positives and false-negatives) by randomization, d’=2.0, 

Optimal Beta = 1.0, Optimal Threshold Z = 1.00. Lower values of the logistic curve 

parameter result in more randomization (completely random = 0); higher values of the 

logistic curve parameter result in less randomization, i.e., approaching SDT strict 

threshold, 0.16, represented by horizontal line. 
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Figure 11. Expected costs (false-positives and false-negatives) by randomization, d’=3.0, 

Optimal Beta = 1.0, Optimal Threshold Z = 1.50. Lower values of the logistic curve 

parameter result in more randomization (completely random = 0); higher values of the 

logistic curve parameter result in less randomization, i.e., approaching SDT strict 

threshold, 0.07, represented by horizontal line. 

In the case of lower diagnosticity (d’=0.50, Figure 8), expected costs 

increase with increased randomness (lower logistic parameter values), but 

not as steeply as for d’ = 1.0 (Figure 9). In contrast, for cases with high 

diagnosticity (d’=2, Figure 10 and d’=3, Figure 11), expected costs increase 

dramatically with increased randomness (lower logistic parameter values). 

For d’=2 (Figure 10), a moderate degree of randomness (logistic parameter 

= 1) nearly doubles the expected cost of misclassification, from 0.16 (no 

randomness) to 0.30. For a high level of diagnosticity, d’=3 (Figure 11), a 

moderate degree of randomness (logistic parameter = 2) nearly doubles 

expected cost from 0.07 to 0.13, and the expected loss triples for slightly 

more randomness (logistic parameter = 1), to 0.22. Randomization has 

substantial impact on expected costs when diagnosticity is high.  
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The sensitivity analyses presented in Figures 8-11 make clear that 

randomization can result in significant expected costs from misclassification 

errors (false-positives and false-negatives), particularly when the risk score 

is more diagnostic. It is clear that any randomization strategy should be 

chosen with care, based on a consideration of minimizing miss-classification 

errors (expected costs from the SDT model) and minimizing threat through 

increased deterrence resulting from randomization. This trade-off should be 

carefully considered after estimation of the diagnosticity of the risk score 

(d’), the expected costs from randomization, and the anticipated benefit of 

reduced threat through deterrence following randomization.  

Implications of Results and Future Directions 
We have demonstrated the value of applying an SDT model to the 

problem of classifying unknown passengers for expedited screening. The 

efficacy of using a risk score for classification and selection purposes 

depends on accurate assessment of its diagnosticity (d’), as well as an 

accurate assessment of base-rate of low-risk passengers in the population of 

unknown passengers and the relative costs of false-positives (designate low-

risk when not low-risk) and false-negatives (designate non low-risk when 

low-risk). Heuristic rules that do not attempt to estimate d’ and determine 

an optimal threshold value for classification are likely to result in suboptimal 

performance, greatly increasing the misclassification errors during screening. 

As indicated in Figures 3-6, costs from misclassification errors can be 

dramatic, particularly for more diagnostic risk score indices. Furthermore, 

while randomization may be justified for the purpose of increasing 

deterrence, there is a price to pay with respect to increased costs due to 

misclassification. Any use of randomization should involve a careful trade-off 

analysis of the expected increase in miss-classification errors and their cost 

against the anticipated benefits of threat reduction due to randomization.  

The next step in this research is to demonstrate use of the SDT model at 

a particular airport. Such a project would require data that would allow us to 

parameterize the SDT model and estimate various parameters, including 

diagnosticity of the risk scores (d’), proportion of low risk passengers (e.g.,  

those who would be granted expedited screening), and the relative costs of 

passenger misclassification (false-negatives and false positives). Results 

from such a study would allow us to compare the current screening strategy 

with both the optimal SDT strategy (no randomization) and with strategies 

utilizing various levels of randomization. This would allow for potential 

improvements in applying risk scores and tailoring them to specific locations 

and times.  
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