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Abstract 
 
Recent results have used game theory to explore the nature of optimal investments in 
the security of simple series and parallel systems.  However, it is clearly important in 
practice to extend these simple security models to more complicated system structures 
with both parallel and series subsystems.  The purpose of this paper is to begin to 
address this challenge.  While achieving fully general results is likely to be difficult, 
and may require heuristic approaches, we are able to find closed-form results for 
systems with moderately general structures, under the assumption that the cost of an 
attack against component any given increases linearly in the amount of defensive 
investment in that component.  These results have interesting and sometimes 
counterintuitive implications for the nature of optimal investments in security. 
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1.  Introduction 

Most past applications of game theory and similar approaches to defense 

against intentional threats to security have dealt either with components in isolation 

(Major, 2002; Woo, 2002, 2003; O’Hanlon et al, 2002), or with simple series and 

parallel systems (Bier and Abhichandani, 2003; Bier et al., 2004).  In the reliability 

area, Levitin and colleagues have by now amassed a large body of work applying 

reliability analysis to problems of security; see for example Levitin (2002, 2003a, 

2003b), Levitin and Lisnianski (2000, 2001, 2003), and Levitin et al. (2003).  Much of 

this work combines reliability analysis with optimization, to identify the most cost-

effective risk reduction strategies; however, the threat is usually assumed to be static, 

rather than responding in an adaptive way to the defenses that have been 

implemented.   

In the real world, however, we will frequently be concerned about protecting 

the functionality of complex systems with arbitrary structures from adaptive threats.  

For example, we may be concerned about preserving the functionality of electricity 

transmission and distribution systems, about protecting nuclear power plants against 

terrorist attacks or sabotage, or about ensuring the existence of a viable transportation 

route from one major city to another, in situations where potential attackers may be 

able to observe some or all of our defenses and adapt their strategies accordingly.  

Thus, it is important to extend the existing results to address more complex situations. 

 There are in principle several ways to do this.  At the most general, 

investments in the security of the various components of the system by the defender 

change the function giving the success probability of an attack on that component as a 

function of the level of effort expended by the attacker.  In response to this function, 

the attacker then determines the level of effort to be expended on attacking each 

component (and hence the success probabilities of those attacks).  However, a variety 

of simplifications to this general model are possible.  For example, one could assume 

that the level of effort expended by the attacker on each component to be attacked is a 

constant, and hence investments by the defender change only the success probability 

of an attack on each component.  Alternatively, one could hold constant the success 

probability of an attack on each component.  In this case, defensive investments could 

be interpreted as increasing the cost or level of effort that the attacker would need to 

expend in order to achieve that probability of success.   
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 Here, we adopt this latter approach, and assume that the defender attempts to 

deter attacks by making them as costly as possible to the attacker.  For example, cost 

could be measured in terms of higher levels of technology needed in order to mount 

an attack, or an increased probability of attackers being captured.  This particular 

approach to simplifying the problem discussed above clearly is not fully general.  For 

example, there may be attack strategies (such as computer attacks) where the cost to 

the attacker is essentially negligible; it may be more plausible to model such 

situations by assuming that defensive investments reduce the success probabilities of 

attacks, rather than increasing their cost.  Moreover, the assumption that the defender 

wishes to maximize the cost of a least-cost attack is only a proxy for the goal of 

deterring attacks, since it could for example yield wasteful solutions in which the 

attack costs resulting from the defender’s investments vastly exceed the available 

resources of any possible attacker.  However, we believe that the model of deterring 

attacks by maximizing the cost of launching an attack is nonetheless reasonable in 

some circumstances, especially where the defender does not have good information 

about the resources available to the attacker(s). 

 Section 2 of this paper presents some results from the literature on least-cost 

failure diagnosis, which will be extended and adapted to model least-cost attack 

strategies.  Section 3 then extends those results to systems with more general 

structures than those discussed in the prior work.   Section 4 uses those results to 

characterize optimal attack strategies, and the corresponding optimal defense 

strategies.  Finally, Section 5 discusses the conclusions of our work, and presents 

some directions for future work. 

 

2.  Results of Prior Work 

As stated above, the approach used here models optimal attack strategies by 

analogy with existing results for least-expected-cost failure-state diagnosis of 

reliability systems.  In this section, we discuss the least-cost diagnosis problem, and 

summarize the existing results of interest to the current study. 

Consider a reliability system, the components of which are to be tested 

sequentially in order to identify the state of the system (operating or failed).  A cost is 

incurred for testing each component of the system.  The initial failure probability of 

each component (before testing) is known, as well as the system configuration.  The 
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problem is to determine the optimal inspection procedure for identifying the system 

state at minimal expected inspection cost. 

Butterworth (1972) solved the problem for simple series and parallel systems, 

and established a sufficient condition for optimality of diagnosis strategies in k-out-of-

n systems.  Halpern (1974) developed an optimal sequential testing procedure for k-

out-of-n systems with equal testing costs for all components, and Halpern (1977) gave 

results for series-parallel and parallel-series systems.  A series-parallel system 

consists of several stages in series with each other, where each stage consists of one or 

more components in parallel; conversely for parallel-series systems.  Ben-Dov (1981) 

developed an optimal procedure for k-out-of-n systems with general costs, and 

provided another proof of the result for series-parallel and parallel-series systems 

from Halpern (1977).  Cox et al. (1989) extended the optimal sequential inspection 

problem to the minimum-expected-cost classification problem, by introducing a 

discrete-valued “classification function,” which corresponds to the “structure 

function” of the system in the special case of the least-cost inspection problem.  In 

particular, Cox et al. (1989) suggested three heuristic procedures for solving 

minimum-expected-cost classification problems, and showed that for some important 

special cases (series-parallel, parallel-series, and k-out-of-n systems), one or more of 

those heuristics produce an optimal solution.  Finally, Cox et al. (1996) extended the 

optimal sequential inspection problem to include situations in which both the system 

structure and the component failure probabilities are uncertain, and are characterized 

by probability distributions. 

We now state the results for optimal inspection of series and parallel systems.  

The existing results for series-parallel and parallel-series systems are not given here, 

as they are special cases of the more general results to be established in the next 

section, and are not needed for the development of those results.  

To begin, consider a series system of n independent components.  Let the 

testing procedure be such that component i+1 is tested only if component i is found 

operational, for all components i=1, 2…n-1.  Also, assume that the testing cost of 

component i is ci, and the failure probability of component i is qi, and let pi = 1 - qi.  

Then, the following result holds; see for example Ben-Dov (1981). 

 

 5DRAFT



Theorem 2.1 

In a series system, testing components i=1, 2…n in sequential order is 

optimum (in the sense that it minimizes expected testing cost) if and only if: 

nn qcqcqc /...// 2211 ≤≤≤    (1) 

In this case, the expected testing cost is given by 

∑ ∏+= =
−
=

n
i i

i
j j cpcC 2

1
11 ][  □                   (2) 

Now, consider a parallel system, and assume that the testing procedure is such 

that component i+1 is tested only if component i is found failed, for all components 

i=1, 2…n-1.  Then, using the same notation as above, the following result also holds; 

see again Ben-Dov (1981). 

 

Theorem 2.2 

In a parallel system, testing components i=1, 2…n in sequential order is 

optimum (in the sense that it minimizes expected testing cost) if and only if: 

nn pcpcpc /...// 2211 ≤≤≤    (3) 

In this case, the expected testing cost is given by 

∑ ∏+= =
−
=

n
i i

i
j j cqcC 2

1
11 ][  □                   (4) 

 

3.  Extension to Systems with More General Structures 

Real-world systems for which reliability is important often involve complex 

combinations of series and parallel subsystems.  Therefore, it is important to 

generalize the results given above to more general combined series/parallel systems. 

Here, we restrict our attention to systems of independent components that can be 

represented “without replications,” in the sense defined by Azaiez and Bier (1995); 

that is, systems that can be represented using only AND/OR logic in such a way that 

each component appears only once.  This implies, among other things, that all parallel 

subsystems must satisfy one-out-of-n success logic (i.e., that the success of any single 

parallel train in a subsystem must be sufficient for success of the entire subsystem).  

Thus, for example, k-out-of-n systems (for 1 < k < n) will not be considered here, 

since in any representation of such systems using only AND/OR logic, at least one 

component will appear more than once. 

Figure 1 below presents an example of a combined series/parallel system that 

can be represented with no replications.  Note that the only operations involved in 

 6DRAFT



constructing such combined series/parallel systems are placing subsystems and/or 

simple components in series and/or in parallel with each other.  The series-parallel 

(respectively, parallel-series) systems discussed by Ben-Dov (1981) and Cox et al. 

(1996) are special cases of such systems.  Before proceeding to the main result, some 

definitions similar to those in Azaiez (1993) are introduced.  

 

3.1 Definitions 

 We now introduce the following definitions: 

1. A subsystem S is called a series (parallel) subsystem with constituents S1…Sn 

(for n > 1) if S can be obtained by placing S1…Sn in series (in parallel). 

2. A series (parallel) subsystem S is called a maximal series (parallel) subsystem 

if no other subsystems of the entire system can be obtained by placing 

additional components or subsystems in series (parallel) with S. 

3. The constituents S1…Sn of a series (parallel) subsystem S are called the basic 

constituents of S if none of them is itself a series (parallel) subsystem.  That is, 

each basic constituent Si of a series subsystem must be either a simple 

component or a parallel subsystem, and conversely for the basic constituents 

of a parallel subsystem. 

 

For instance, the system represented in Figure 1 is a maximal series subsystem whose 

basic constituents are subsystem S3 and component 5.  In turn, S3 is a maximal parallel 

subsystem whose basic constituents are subsystem S2 and component 4, and so on. 

It follows that every series (parallel) subsystem has a unique set of basic 

constituents.  Also, any system with more than one component must be either a 

maximal series or a maximal parallel subsystem.  Next, we provide an “initialization 

algorithm” that will be used to derive the optimal testing policy of an arbitrary 

combined series/parallel system. 

 

3.2 Initialization Algorithm  

Consider a combined series/parallel system that can be represented with no 

replications, as discussed above.  The following algorithm is used to order the basic 

constituents of all subsystems of such a system, prior to identifying the optimal 

inspection policy. 
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Step 1 

Consider any maximal series subsystem S for which all the basic constituents 

S1…Sn are simple components.  Let ci be the testing cost of component Si, and let pi 

and qi be the success and failure probabilities of component Si, respectively, for all 

i=1…n.  Then, do the following: 

 

1. Reorder and re-label the components (if necessary) so that condition (1) above 

holds.  We say that S = (S1…Sn) is now ordered.   

2. Since the expected cost of testing the series subsystem S = (S1…Sn) is given 

by equation (2) above, set C(S) = ∑ ∏=

−

=
+

n

i i
i

j j cpc
2

1

11 ][ . 

3. Set  and ∏= =
n
i ipSP 1)( )(1)( SPSQ −=  to be the success and failure 

probabilities of subsystem S, respectively. 

 

Similarly, for any maximal parallel subsystem S for which all the basic 

constituents S1…Sn are simple components, and using the same notation as above, do 

the following: 

 

4. Reorder and re-label the components (if necessary) so that condition (3) above 

holds.  We say that S = (S1…Sn) is now ordered.  Whenever S is to be tested, it 

should be tested sequentially according to the established order, such that 

component Si+1 is tested only if component Si is found failed. 

5. Since the expected cost of testing the parallel subsystem S = (S1…Sn) is given 

by equation (4) above, set C(S) = ∑ ∏=

−

=
+

n

i i
i

j j cqc
2

1

11 ][ . 

6. Set  and ∏= =
n
i iqSQ 1)( )(1)( SQSP −= to be the failure and success 

probabilities of subsystem S, respectively.  

 

If the entire system is now ordered (i.e., if all maximal series or parallel 

subsystems are now ordered according to steps 1-3 or 4-6, as appropriate), then stop.  

Else, go to step 2. 
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Step 2 

Consider each non-ordered maximal series (respectively, parallel) subsystems 

S = (S1…Sn) in which all basic constituents are either ordered subsystems or simple 

components.  If any basic constituent Si is a simple component, then let C(Si) be the 

testing cost of Si, and P(Si) and Q(Si) be the success and failure probabilities of Si, 

respectively.   

For each maximal series subsystem S = (S1…Sn) in turn, do the following: 

 

7. Reorder and re-label the basic constituents (if necessary) so that the following 

condition holds: 

)(/)(...)(/)()(/)( 2211 nn SQSCSQSCSQSC ≤≤≤  (5) 

We say that S = (S1…Sn) is now ordered.   

8. Set .               (6) )(])([)()( 2
1
11 ∑ ∏+= =

−
=

n
i i

i
j j SCSPSCSC

9. Set  and )()( 1∏= =
n
i iSPSP )(1)( SPSQ −= to be the success and failure 

probabilities of S, respectively. 

 

Similarly, for each maximal parallel subsystem S = (S1…Sn), do the following: 

 

10. Reorder and re-label the basic constituents (if necessary) so that the following 

condition holds:  

)(/)(...)(/)()(/)( 2211 nn SPSCSPSCSPSC ≤≤≤  (7) 

We say that S = (S1…Sn) is now ordered.   

11. Set .    (8) )(])([)()( 2
1
11 ∑ ∏+= =

−
=

n
i i

i
j j SCSQSCSC

12. Set  and )()( 1∏= =
n
i iSQSQ )(1)( SQSP −=  to be the failure and success 

probabilities of S, respectively.  

 

Repeat step 2 as needed until all subsystems have been ordered. 

END. 

 

3.3 Initialization Example 

We now apply the above algorithm to the system given in Figure 1, with the 

following data.  Let the inspection costs be given by: c1=10; c2=12; c3=7; c4=6; and 
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c5=10.  Also, let the success probabilities be given by: p1=0.7; p2=0.8; p3=0.67; 

p4=0.6; and p5=0.9.   

For step 1, we consider the maximal parallel subsystem S1 formed by 

components 2 and 3.  The ratios of cost to success probability are 15 and 10.45 for 

components 2 and 3, respectively.  Based on step 1 of the initialization algorithm, we 

need to renumber the components so that constituent  of subsystem 1 will be 

component 3, and constituent  of subsystem 1 will be component 2.  To distinguish 

the subsystem before and after ordering, in this example we will use 

1
1S

1
2S

S
r 1 to denote the 

subsystem after ordering, so that the ordered subsystem will be given by S
r 1 = (3, 2).  

The corresponding expected cost is given by C( S
r 1) = c + q  c = 10.96.  Also, the 

failure probability is given by Q(

3 3 2 

S
r 1) = q2 q3 = 0.066 and the success probability is 

therefore P( 1S
r

) = 1 - Q( 1S
r

) = 0.934.   

In step 2, we begin by considering the series subsystem S2
 made up of 

component 1 and ordered subsystem S
r 1; i.e., S2 = (1, S

r 1).  Set C(1) = c1 = 10 and 

P(1) = p1 = 0.7.  The ratios of cost to failure probability are 33.3 and 166.1 for 

component 1 and ordered subsystem S
r 1, respectively.  Therefore, the ordered series 

subsystem 2S
r

 is given by 2S
r

 = (1, S
r 1).  The corresponding expected cost of the 

ordered subsystem 2S
r

 is given by C( S
r 2) = C(1) + P(1) C( S

r 1) = 17.67.  Also, the 

success and failure probabilities of S
r 2 are 0.65 and 0.35, respectively.   

We next consider the parallel subsystem S3 = ( S
r 2, 4) made up of ordered 

series subsystem S
r 2 and component 4.  The ratios of cost to success probability are 

28.4 and 10.0 for ordered subsystem S
r 2 and component 4, respectively.  This yields 

the ordered subsystem 3S
r

 = (4, S
r 2).  The failure probability of S

r 3 is given by Q( 3S
r

) 

= q Q(4 S
r 2) = 0.14, leading to a success probability of P( S

r 3) = 0.86.  The 

corresponding expected cost of the ordered subsystem S
r 3 is given by C( S

r 3) = C(4) + 

Q(4) C( 2S
r

) = 13.07. 

Finally, we consider the entire system S = ( S
r 3, 5).  Set C(5) = c = 10 and 

P(5) = p = 0.9.  The ratios of cost to failure probability are 94.7 and 100.0 for 

ordered subsystem 3

5 

5 

S
r

 and component 5, respectively.  Therefore, S is already 

ordered.  However, to distinguish between the initial version of system S and the 
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ordered one, we will as above denote the latter by S
r

.  Moreover, the expected testing 

cost for the ordered system is given by C( S
r

) = C( S
r 3) + P( S

r 3) c5 = 13.07 + 0.86 (10) 

= 21.67.  Also, the system success probability is P( S
r

) = P( S
r 3) p  = 0.78.  □ 5 

 

3.4 Optimal Inspection Policy 

The following lemma, for which the proof is omitted, is a natural extension of 

the lemma stated in Ben-Dov (1981).  Moreover, its proof relies on the same basic 

argument used in the induction proof given in Ben-Dov (1981).  

 

Lemma 3.1 

Consider any ordered series or parallel subsystem S = (S1…Sn).  Then in order 

to minimize the expected testing cost, testing of any basic constituent Si must be 

performed to completion before moving on to testing of another basic constituent with 

a subscript higher than i.  □ 

 

We are now ready to establish the main result of this section. 

 

Theorem 3.1 

Consider a combined series/parallel system S, ordered according to the 

initialization algorithm.  Then, the optimal testing policy that minimizes the expected 

testing cost is to follow the orderings specified in the initialization algorithm.  

Moreover, if a basic constituent  of subsystem Sj
iS j = (  … ) is to be tested, then 

it should be tested to completion before moving on to testing of basic constituent  

of that subsystem (or testing of some other subsystem), if needed.  In this case, the 

optimal expected testing cost of the system will equal C(S), as computed in the above 

algorithm. 

jS1
j

nS

j
iS 1+

 

Proof 

The proof is established by induction on the number of simple components 

(i.e., the cardinality of S), denoted S .  If S  = 2, then S is either a series or a parallel 

system of two components.  The result holds for any series or parallel system by 

Theorems 2.1 and 2.2.  Assume now that the result holds if S  = k-1.  Let S  = k, and 
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let S = (S1…Sn) be the representation of S in terms of its basic constituents.  If n = k 

(i.e., all basic constituents are simple components, and therefore S is either a series or 

a parallel system), then the result holds for the reason given above.  Otherwise, some 

basic constituent (say, Si) is not a simple component.  Certainly, we know that iS <k.  

Therefore, if Si is to be tested, then by the induction hypothesis it should be tested to 

completion, and in the order specified in Theorem 3.1.   

Now, consider a virtual system )...,~,...,(~
1121 nii SSsSSSS +−=  that consists of 

the same basic constituents as S, except that subsystem Si has been replaced by a 

simple component s~  with testing cost c = C(Si) and success probability p = P(Si) 

(computed according to the initialization algorithm).  From the lemma, testing S 

optimally is equivalent to testing S~  optimally.  However, we know that kS <
~ .  

Therefore, the induction hypothesis specifies that S~ should be tested as in the 

algorithm.  If s~ requires testing, then this is equivalent to testing Si to completion in 

the order specified in the algorithm.  It follows that S will also be tested optimally as 

in the algorithm, and consequently the optimal testing cost will equal C(S) as 

computed in the algorithm.  □ 

 

Note that the series-parallel and parallel-series systems given in Ben-Dov 

(1981) are special cases of the combined series/parallel systems considered here. 

 

3.5 Optimal Inspection Policy for Example 

The optimal testing procedure for the system discussed in Section 3.3 and 

shown in Figure 1 is as follows: 

 Test 3S
r

 first.  If it is found to be failed, then conclude that the system S is 

failed.  Otherwise, test component 5.  If component 5 is failed, then S is failed; 

otherwise, S is operating. 

 To test 3S
r

, start by testing component 4.  If it is found to be operating, 

then conclude that S
r 3 is operating.  Otherwise, test S

r 2. 

• To test 2S
r

, first test component 1.  If it is failed, then conclude 

that 2 S
r

(and therefore S
r 3

 and the entire system S) are failed.  

Otherwise, test S
r 1.   
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o To test S
r 1, test component 3 first.  If it is found to be 

operating, then S
r 1, S

r 2, and S
r 3 are also operating. 

Otherwise, test component 2.  If failed, then 1S
r

, 2S
r

, 
3S
r

, and S
r

 are failed; otherwise, S
r 1, 2S

r
, and 3S

r
 are 

operating. 

 

One can easily show using the initialization algorithm that the expected testing cost of 

the above procedure is 21.67.   

 

4.  Optimal Attack/Defense Strategies  

We now shift our discussion to the primary question of interest in this paper; 

namely, identification of optimal attack strategies, and corresponding optimal 

defenses.  We therefore replace the terminology of inspection policies by the 

terminology of attack strategies.  In the context of attack strategies, the costs will be 

the costs to the attacker of launching attacks on the various components of a targeted 

system, and the failure (respectively, success) probabilities will refer to failure 

(respectively, survival) of those components after being attacked.   

We assume that each component can be attacked at most once.  This might be 

a reasonable assumption, for example, if a component that survives an initial attack is 

extremely likely to survive all subsequent attacks; in that case, after a failed attack on 

one component, an attacker would prefer to attack other components, even if they 

were initially less attractive than the first one.  This assumption is not as restrictive as 

it would initially appear.  For example, the cost ci and success probability pi of an 

attack on component i could be specified to reflect not the cost and success 

probability of a single attack, but rather the cumulative cost and cumulative success 

probability of a large number of repeated attacks against the same component.  (This 

approach to specifying the costs and success probabilities of attacks to reflect the 

effects of multiple attacks is still less than fully general, however.  That is because the 

structure of our model essentially assumes that all attacks against any given 

component occur consecutively.  Thus, our model would not allow an attacker to 

target component 1, move on to try an attack against component 2 if the first attack 

fails, and then come back to again target component 1 if the attack against component 

2 also fails.)  
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We define a feasible attack policy to be one that continues until either the 

system is disabled, or the attacker discovers (via failed attempts on components in all 

minimal cut sets of the system) that it will be impossible to disable the system.  We 

assume that the attacker objective is to determine the feasible attack policy with 

minimum expected cost.  In this case, the initial optimal attack strategy (before any 

defensive investments have been undertaken) will be analogous to the optimal 

inspection strategy given in Theorem 3.1, under the same assumptions about the 

system; i.e., that the system can be represented in a combined series/parallel 

configuration with no replications (as explained above), and that attacks on each 

component succeed or fail independently of the results of attacks on other 

components.  (Note that the above assumptions will hold throughout the remainder of 

this paper.) 

Under these assumptions, and by analogy with Theorem 3.1, the optimal least-

cost attack policy for an ordered series (parallel) path will consist of attacking basic 

constituent Si+1 only if an attack on basic constituent Si fails (succeeds).  In an ordered 

system, basic constituent Si will be attacked before any basic constituent Sj with j>i, 

so we will say that Si is “more attractive” to the attacker than Sj.  This concept can 

also be generalized to components and/or subsystems not necessarily belonging to the 

same series or parallel path.  In particular, if in an optimal attack strategy one 

component or subsystem will be attacked before another component or subsystem, we 

will say that it is “more attractive.”  In this context, “ordered” will mean from most 

attractive to least attractive.   

Note that in a series subsystem, “more attractive” means “more fragile” 

(holding the attack costs equal).  However, in a parallel subsystem, “more attractive” 

means “more robust” (again holding the attack costs equal).  The intuition behind this 

is that if it will be impossible to disable a particular subsystem, the attacker would like 

to find that out before a lot of resources have been invested in attempting to disable 

the individual constituents of that subsystem.  Therefore, in a parallel subsystem, the 

first basic constituent to be attacked should be either the strongest constituent of the 

subsystem (if the attack costs of all constituents are equal), or more generally the 

constituent with the lowest ratio of attack cost to probability of surviving the attack.  

This avoids wasting resources on constituents that can be disabled with high 

probability, if the attacker is unlikely to be able to disable the subsystem as a whole.  

(Another way to think about this is that in a parallel subsystem, an attack on a 
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constituent with a low probability of being disabled provides more “information” to 

the attacker on the likelihood of being able to disable the subsystem than attacks on 

more vulnerable constituents.) 

We assume that the objective of the defender is to maximize the minimum 

expected cost of a feasible attack.  We recognize that the cost of an attack to the 

attackers may not actually be a high priority to the defender in this context.  However, 

the general idea of this defensive strategy is that by maximizing the minimum 

expected cost of a feasible attack, such an attack may become beyond the capabilities 

of some or all potential attackers (for example, by increasing the technological 

sophistication needed to achieve a particular success probability).   

We assume that defensive investments in any given component increase the 

cost of attacking that component, but do not decrease the probability of an attack 

succeeding.  (Another way of stating this is to assume that attackers respond to 

defensive investments by increasing their efforts enough to hold the probability of 

success constant, until that is no longer within their capabilities.)  Moreover, we 

assume that the attacker is aware of any changes in the system (i.e., defensive 

investments) before launching an attack (the case of perfect knowledge), and selects 

the optimal attack strategy accordingly.  

In this formulation, the defender’s decision variables consist of the resources 

to devote to increasing the cost (to the attacker) of attacks on the various components, 

subject to a budget constraint B limiting the total defensive investments.  We assume 

that the defender wishes to maximize the expected cost of a least-cost feasible attack, 

in the hopes that an attack will then be beyond the (unknown) capabilities of the 

attacker(s).  The problem thus is to determine the optimal allocation of the total 

defensive budget B over the various components in order to maximize the expected 

cost of an optimal attack.  We will assume that the cost of attacking a component is 

monotonically increasing in the defensive resources allocated to that component.  This 

means that the optimum defensive investment will occur at the boundary of the 

feasible set, or in other words that the optimal defensive strategy is to spend the entire 

available budget.   

We focus here on the case in which the cost of an attack against component i 

increases linearly in the amount of defensive investment in that component, xi.  In 

other words, if the initial cost of attacking component or subsystem Si (before any 

defensive resources have been expended to increase this cost) is ci, then a defensive 
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investment of xi is assumed to increase the attack cost from ci to ci + aixi.  The 

assumption that the attack cost increases linearly in the defensive investment is 

restrictive, but may be realistic for some types of security improvements (e.g., 

installing additional protective devices in a facility), if the attacker must remove or 

disable each of these devices one after the other.  The assumption of linearity may 

also be reasonable for other types of defensive investments, provided that the 

defensive budget is sufficiently small for the attacker cost to be well-approximated by 

a linear function within the feasible region.   

 

4.1 Series System 

Consider an ordered series system S of n components, for which the initial cost 

of an attack on component Si is ci, the probability of the component resisting an attack 

is qi, and pi = 1 - qi for i=1…n.  Since the system is assumed to be ordered, 

relationship (1) holds.  The problem is to determine the optimal allocation of 

defensive resources to maximize the expected cost of an optimal attack.  (It should be 

clear here that optimality for the attacker is considered to be minimizing the expected 

cost of an attack.  Moreover, as before, any feasible attack is assumed to be continued 

until either the system is disabled or the attackers have exhausted their options for 

disabling the system.)  

Let C(0, 0…0) be the initial cost of an optimal attack (before any defensive 

investments have been undertaken), and let C(x1, x2…xn) be the expected cost of an 

optimal attack after an investment of (x1, x2…xn) in components (S1, S2…Sn), 

respectively.  Note that C(0, 0…0) is given by relationship (2) above.  Then, the 

optimal defensive investment will be the solution to the following optimization 

problem: 

 

nix

Bxts

xxxC

i

n

i i

n
nxxx

...1,0

..

)...,(max

1

21...2,1

=≥

≤∑ =
     (9) 

 

Note that the feasible region of (9) is a compact set, and the objective function 

is increasing in each argument.  Moreover, it is possible to show that the objective 
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function is also continuous (although not in general differentiable).  Therefore, the 

following lemma holds. 

 

Lemma 4.1 

An optimal solution of optimization problem (9) exists, and occurs at the 

boundary of the feasible region {x1, x2…xn ≥ 0 | }.   Bxn
i i =∑ =1

 

If the components are ordered in terms of their attractiveness, then the 

minimum expected cost of a feasible attack would be given by 

C(x1, x2…xn) = )(
2

1

1111 ii
n

i i
i

j j xacqxac +++ ∑ ∏=

−

=
  (10) 

Note, however, that the budget allocation can change the order of attractiveness of the 

various components.  This would also change the objective function of the problem.  

In particular, if after some defensive investment (x1, x2…xn) the components are 

ordered according to ))()...1(( nππ , where  π  is a permutation of (1, 2…n), then the 

objective function would become  

C(x1, x2…xn) = )( )(2 )(
1

1 )()1()1()1( ii
n

i i
i

j j xacqxac ππππππ +++ ∑ ∏=

−

=
 (11) 

Thus, optimization problem (9) is not a standard optimization problem, since 

while the objective function can always be written as a linear function of the decision 

variables xi, the specific form of that linear combination will vary depending on the 

values of the decision variables.  Optimization problem (9) could still be solved by 

decomposing it into n! linear programs (some of which may not be feasible, if the 

budget is not large enough to achieve some of the n! possible orderings of the 

components), solve all of these linear programs individually, and then choose the sub-

problem whose optimal solution gives the largest minimum expected cost to the 

attacker.   

The above approach should be computationally feasible at least when n is 

relatively small.  In fact, while the number of linear programs to be solved may be 

quite large, any individual linear program would be quite simple, and would most 

likely require at most a few seconds of computational time using standard 

optimization software.  Much the same approach could also be applied to parallel 

systems and general combined series/parallel systems, following the procedures given 
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in Section 3.  However, this approach does not provide much insight into the 

qualitative properties of the optimal solution.   

In order to investigate the qualitative properties of the optimal solution, we 

will assume that the cost-effectiveness parameters for investments in the various 

components are all equal; i.e., ai = a for all i.  This is certainly a restrictive 

assumption, but allows us to fully characterize the optimal solution in this special 

case.   

We now present results for the optimal budget allocation for defense of a 

series system as described above, where now we set ai = a for all i=1, 2…n.  We 

begin by stating some preliminary results.  

 

Proposition 4.1 

If we have 2211 //)( qcqaBc ≤+ , then the optimal allocation policy will be 

given by (B, 0…0). 

 

Proposition 4.1 states that if after spending the entire budget on the component that is 

initially most attractive it is still the most attractive, then the optimal policy will be to 

allocate the entire budget to that component. 

 

Proof 

From the hypothesis, component 1 will be the most attractive component for 

any feasible defensive investment (x1, x2…xn).  Therefore, the objective function will 

be of the form: 

)]([)...,( )(2 )(
1

1 )(1121 i
n

i i
i

j jn xacpaxcxxxC πππ∑ ∏=

−

=
+++=       (12) 

where π is a permutation of the components (S2…Sn) such that (S1, Sπ(2)…Sπ(n)) is an 

ordered series system after investment of (x1, x2…xn).  It follows (using Lemma 4.1) 

that 

aBCxaCxpxaCxxxC n

i ii
n

i

i

j jn +=+≤++≤ ∑∑ ∏ ==

−

= 010)(2

1

1 )(1021 )}]([{)...,( ππ   

However, the right-hand side of the last inequality is simply C(B, 0…0).  □ 
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Proposition 4.2  

If all components are equally attractive initially, then under the optimal 

defensive investment they will still be equally attractive, the optimal resource 

allocation will be given by  

( ) niqBqx n

j jii ...1/
1

* =∀= ∑ =
,                   (13)  

and we will have 

       (14) njiqaxcqaxc jjjiii ...1,/)(/)( ** =∀+=+

 

Proof 

First, it should be clear that if (S1…Sn) is the ordered series system after an 

optimal allocation of (x1, x2…xn), then the expected cost of an attack, C(x1, x2…xn), 

can be written in the form ,),...,(
101 ∑ =

+=
n

i iin xCxxC η  where the coefficients iη  are 

non-increasing, and if 111 /)(/)( +++ +<+ iiiiii qaxcqaxc , then iη > 1+iη .  Assume now 

that (14) does not hold.  Then, equation (14) will be replaced by a strict inequality for 

some pair of i and j=i+1.  In that case, it would be possible to improve the value of 

the objective function by increasing xi and reducing xi+1 while holding their sum 

constant, because iη > 1+iη .  This allows the defender to further increase the expected 

cost of an attack, contradicting the hypothesis that the initial allocation was optimal.  

From (14), (13) immediately follows.  □ 

 

From Propositions 4.1 and 4.2 (keeping in mind the arguments used in their 

proofs), the following result holds. 

 

Corollary 4.1 

If the first k < n ordered components are equally attractive, and we have  

( ) 111
//)/( ++=

≤+ ∑ kk
k

j jii qcqaBqc  for i=1…k, then the optimal allocation policy is 

given by ( ) 0and,,/ *
1

* =≤= ∑ = i
k

j jii xkiqBqx otherwise.  

 

The corollary states that if the budget is not sufficient to reduce the 

attractiveness of the most attractive ones to the same level as that of the next most 

attractive component(s), then the less attractive components should not receive any 
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investment at optimality, and the optimal policy should protect all of the most 

attractive components evenly (i.e., keeping them equally attractive).  Moreover, the 

allocation of defensive resources to any component that is among the most attractive 

should be proportional to the probability of that component failing in an attack (which 

is intuitively reasonable).  We are now ready to state the general result for series 

systems. 

 

Theorem 4.1 (Optimal allocation policy) 

Consider an ordered series system (S1…Sn) satisfying (1), with available 

defensive budget B.  If investing an amount xi in component Si will increase the 

attacker cost by axi for some positive value a, then the optimal investment policy that 

maximizes the minimum expected cost to the attacker is as follows: 

 

1. Invest in protecting component S1 until either the total budget is 

depleted or S1 becomes only as attractive as S2, whichever occurs first. 

2. If the first k components (1 < k < n) are equally attractive and the 

budget is not yet depleted, then allocate the remaining budget among 

components 1…k while keeping them equally attractive until either the 

total budget is depleted or they become only as attractive as component 

Sk+1, whichever occurs first. 

3. If all n components are equally attractive and the budget is not yet 

depleted, then allocate the remaining budget among all components 

while keeping them equally attractive.  

 

Proof 

Using the fact that the objective function of each optimization sub-problem in 

the decomposition approach mentioned above is linear, one can allocate the budget 

sequentially (i.e., in a greedy manner) without affecting optimality.  Thus, by 

decomposing the budget and allocating it according to the three steps in Theorem 4.1 

(applying first Proposition 4.1, then Corollary 4.1 as appropriate, and finally 

Proposition 4.2 if needed), the result follows.  □ 
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4.2 Parallel Systems 

Consider an ordered parallel system (S1…Sn), for which the initial costs of 

attacking its components satisfy (3), and an available budget B for protecting the 

system.  If we replace qi by pi = 1 - qi, i=1…n, where pi is the probability that 

component Si fails given an attack, we can obtain results analogous to those in Section 

4.1.  More precisely, we have the following result, the proof of which is analogous to 

that of Theorem 4.1. 

 

Theorem 4.2 (Optimal allocation policy) 

Consider an ordered parallel system (S1…Sn) satisfying (3), with available 

defensive budget B.  If investing an amount xi in component Si will increase the 

attacker cost by axi for some positive value a, then the optimal investment policy that 

maximizes the minimum expected cost to the attacker is as follows: 

 

1. Invest in protecting component S1 until either the total budget is 

depleted or S1 becomes only as attractive as S2, whichever occurs first. 

2. If the first k components (1 < k < n) are equally attractive and the 

budget is not yet depleted, then allocate the remaining budget among 

components 1…k (while keeping them equally attractive) until either 

the budget is depleted or they become as attractive as component Sk+1, 

whichever occurs first. 

3. If all n components are equally attractive and the budget is not yet 

depleted, then allocate the remaining budget among all components 

while keeping them equally attractive. □ 

 

This implies in particular that in a parallel configuration, if the initial costs of 

attacking the various components are all equal, then the optimal defensive strategy 

would further protect the most robust components and subsystems before considering 

the fragile ones.  Of course, when the cost of attacking the most robust components 

gets sufficiently high, they will become less attractive, and more fragile components 

or subsystems will then have priority for further protection.   
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4.3 General Combined Series/Parallel Systems 

We consider now the general case of combined series/parallel systems that can 

be represented without replications, in which attacks against the various components 

succeed or fail independently, as assumed above.  The following lemma, for which 

the proof is omitted, is simply an adaptation of Lemma 3.1 from the context of 

optimal (least-cost) testing strategies to optimal attack strategies. 

 

Lemma 4.2 

Consider any ordered series or parallel subsystem S = (S1…Sn).  Then in order 

to minimize the expected cost of an attack, an attack against any basic constituent Si 

should be completed before moving on to attempt an attack against basic constituent 

Si+1.  □ 

 

This lemma states that an optimal attack strategy will not involve attacking 

some components in Si, then others in Si+1, and then still others in Si.  Therefore, any 

basic constituent Si can be treated as if it were a simple component.  This lemma and 

Theorems 4.1 and 4.2 now allow us to state the general result for an arbitrary series/ 

parallel system under the restrictions of independence and no replications.  The proof 

is omitted, as it suffices to follow the steps of the initialization algorithm and then 

apply the above results as appropriate. 

We consider an arbitrary combined series/parallel system S with no 

replications, ordered as in the initialization algorithm (adapted as appropriate to apply 

to optimal attack strategies rather than optimal testing strategies).  As before, the 

defender’s objective function is taken to be maximizing the expected cost of an 

optimal (i.e., least-cost) attack, and investing an amount xi in component i is assumed 

to increase the cost of an attack against that component by axi for some positive value 

a.  Then, the following result holds.   

 

Theorem 4.3 (General combined series/parallel system) 

Under the assumptions above, the optimal defensive strategy is as follows: 

1. If the system S is a maximal series subsystem consisting of basic 

constituents (S1…Sn), then determine the optimal allocation of 

defensive investments to these constituents by applying Theorem 4.1 to 

(S1…Sn), with the exceptions that the ordering of the basic constituents 
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satisfies (5) instead of (1), and the wording “component(s)” is 

everywhere replaced by “basic constituent(s)” (to reflect the fact that 

the basic constituents of S may be subsystems instead of simple 

components).   

2. If the system S is a maximal parallel subsystem consisting of basic 

constituents (S1…Sn), then determine the optimal allocation of 

defensive investments to these constituents by applying Theorem 4.2 to 

(S1…Sm), with the exceptions that the ordering of the basic constituents 

satisfies (7) instead of (3), and the wording “component(s)” is 

everywhere replaced by “basic constituent(s).” 

3. Determine the optimal allocation of defensive investments among the 

basic constituents of each subsystem considered in steps 1 and 2 above, 

by again applying either step 1 or step 2 above as appropriate.   

4. Repeat step 3 until decisions have been made regarding the optimal 

defensive investment in all simple components of the system.  □ 

 

This result basically states that the most attractive components or basic 

constituents should be protected first, before considering the next most attractive.  

This is intuitive from the fact that the “improvement rate” (as given by the coefficient 

a) is the same for all components.  Note, however, that the components most 

attractive to the attacker need not be defended first if different components have 

different coefficients ai.  In fact, if some moderately attractive components can be 

significantly improved with only a minor investment, while the most attractive ones 

require much larger investments to achieve similar improvements, then a limited 

budget would not necessarily be allocated only to the most attractive components.  In 

that case, the attractiveness of the various components to the defender (in allocating 

defensive investments) need not be the same as their attractiveness to the attacker, 

since attractiveness to the defender depends on the cost-effectiveness of defensive 

investments in the various components, not only the cost and success probability of 

attacks against the various components.  (Note, however, that if the attacker does not 

eventually target all components, but rather can afford to target only a single minimal 

cut set of the system, then it may no longer be optimal to defend any but the most 

attractive components, regardless of the cost-effectiveness of defensive investments in 

less attractive components.) 
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The results stated above are for the case of “perfect knowledge,” where the 

attacker is assumed to be fully aware of any improvements made to the system by the 

defender prior to launching an attack.  However, it should be clear that the optimal 

defensive strategy derived under the assumption of perfect knowledge is conservative 

for the defender, in the sense that the expected attack cost in the case of perfect 

information is a lower bound on the expected attack cost in the more general case of 

“imperfect knowledge.”  Moreover, the result in Theorem 4.3 depends on the 

assumption that the attacker will eventually target all minimal cut sets of the system, 

if not already successful in an earlier attack.  However, the algorithm in Theorem 4.3 

still yields a conservative strategy for the defender if the attacker cannot afford to 

target all minimal cut sets, but the defender does not know which minimal cut sets the 

attacker plans to target. 

 

5.  Conclusions and Directions for Further Work 

The results presented here represent an initial attempt to extend existing 

results for defense of individual components (e.g., Major, 2002; Woo, 2002, 2003; 

O’Hanlon, 2002) or simple series and parallel systems (e.g., Bier and Abhichandani, 

2003; Bier et al., in press) to combined series/parallel systems of more realistic 

complexity.  As such, it yields interesting and sometimes counterintuitive insights, 

such as the observation that defending the stronger train(s) in a parallel subsystem can 

actually impose greater burdens on prospective attackers than hardening the weaker 

train(s).   

As a preliminary analysis of a complex problem, there are obviously numerous 

possible extensions, refinements, and alternative model formulations that might be 

worth exploring.  For example, we have indicated briefly how our approach could be 

applied in the case where the cost-effectiveness of defensive investment in the various 

components differs.  However, our results so far are limited to the case where the cost 

of attacks increases linearly in the defensive investment.  Since this may hold only for 

a limited range of defensive investments, it would be of interest to characterize the 

nature of the optimal defensive investment in the more realistic case where the cost of 

an attack is a concave function of the defensive investment, even if this can be done 

only for series systems rather than more general system structures. 

Similarly, our current model has the disadvantage that it can lead to wasteful 

levels of expenditure by defenders, in cases where the maximum expected attack cost 
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achievable by the defender vastly exceeds the resources of likely attackers.  In 

practice, it seems likely that defenders will be significantly resource-constrained, in 

which case this may not be a significant limitation.  However, to enhance the 

applicability of our model, it would be interesting to extend our results to the case 

where the defender does not have a firm budget constraint, and instead chooses the 

total level of investment based on the value of the system being protected, and some 

(perhaps uncertain) assessment of the attacker budget. 

Models of imperfect attacker information might also be of interest.  In this 

type of formulation, failed attacks against particular components might serve to 

update the attacker’s assessment of their attractiveness (e.g., in a Bayesian manner).  

This could serve to model “probing” attacks, whose purpose is in part to gather 

information about system defenses.  A model of this form might have the feature that 

attackers can come back to re-target components that had previously been attacked 

unsuccessfully, if subsequent attacks revealed other components to be even more 

difficult to disable.   

Additionally, it might be worthwhile to model the situation in which defensive 

investment reduces the success probability of an attack, rather than increasing its cost.  

Such a model, while perhaps mathematically less tractable, would be more intuitively 

appealing, since the defensive investments would more clearly be defending the 

system, rather than merely attempting to deter attackers.  A revised model of this sort 

would also apply in situations where the attacker is not realistically budget-

constrained, such as some types of extremely low-cost computer attacks, which can be 

extremely damaging but are within the resource constraints of enterprising teenagers.   

Finally, in a more fully general model, defensive investments in the various 

components of a system would change the function relating the success probability of 

an attack to the level of effort expended by the attacker.  In response to this function, 

the attacker would then simultaneously determine both the levels of effort to be 

expended on attacking the various components, and the success probabilities of those 

attacks.  Such a model might then make it possible to assess the merits of differing 

types of defensive strategies, such as increasing the cost of attacks (which might deter 

some attackers, but would not necessarily reduce the success probabilities of those 

attackers with the most resources), reducing the success probabilities of attacks 

(without necessarily deterring any attackers), etc. 
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Figure 1 Sample system S that can be represented with no replications 
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