
 
 
 

SUBSIDIZED SECURITY AND STABILITY OF 
EQUILIBRIUM SOLUTIONS IN AN N-PLAYER 

GAME WITH ERRORS 
 

Zhuang, J. & Bier, V. 
 

CREATE REPORT 
Under FEMA Grant EMW-2004-GR-0112 

 
April 1 , 2005 

 
 
 

                              
   

 
 
 
 

 
Center for Risk and Economic Analysis of Terrorism Events 

University of Southern California 
Los Angeles, California 

 
 
 

3710 McClintock Avenue, RTH 314  Los Angeles, CA 90089-2902 ~ (213) 740-5514 ~ www.usc.edu/create 

Report #05-008 DRAFT



Subsidized Security and Stability of Equilibrium 
Solutions in an N-Player Game with Errors 

 

 

CREATE Report 

 
 

 

April 1, 2005 

 

 

 
 
 
 
 

Jun Zhuang and Vicki M. Bier  

Department of Industrial and Systems Engineering 

University of Wisconsin-Madison 

 1DRAFT



 

 

 

Abstract 
 
Optimizing resource allocation in interdependent security problems is a serious challenge for 
U.S. homeland security.  In this paper, game theory is applied to this challenge in the case 
where investment by one defender has positive externalities for other players.  The 
phenomena of tipping and cascading are discussed, and we explore how to target subsidized 
security in order to achieve the best results from tipping.  In particular, we examine the 
effects of subsidized security on both the stability of the equilibrium solutions and the total 
social costs.  Results indicate, not surprisingly, that equilibrium solutions are less stable in 
systems with larger probabilities of agent error, but also (perhaps less obviously) in systems 
with larger numbers of agents.  We show that subsidization of security investments can 
increase the stability of equilibrium solutions, and also decrease the total expected social 
costs.  The above findings are illustrated in a numerical example.  
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1. Introduction 

After September 11, 2001, homeland security has received a great deal of attention in the 

U.S.  Since security-related resources are always limited, maximizing security subject to 

limited resources is a key challenge. “Tipping” (Schelling, 1978; Gladwell, 2000) has been 

suggested as a cost-effective way to encourage security investment, since if successful, a 

subsidy or other incentive to encourage a relatively small number of agents to invest can 

induce other agents to also invest in security, and therefore more nearly achieve the social 

optimum. 

 

Many security problems (including aviation security, computer security, and supply-chain 

security) involve interdependence among potential defenders, meaning that one agent’s 

strategy can affect the security environment for other agents. For example, poor security on 

the part of one airline, computer user, or supply-chain partner can increase the rate of attacks 

on other agents. 

 

Game theory has already been applied to such interdependent security problems (Kunreuther 

and Heal, 2003; Bier and Gupta, 2005). However, to our knowledge, no previous studies have 

investigated the effect of subsidizing of security investment on the stability and total social 

cost of the equilibrium solutions. Secondly, previous studies have not investigated the effect 

of error-prone agents on the stability of equilibrium solutions, and how subsidization of 

security can be used to minimize the adverse effects of such errors. Finally, previous studies 

have not investigated how the total social costs in the case of subsidized security investment 

compare to the total costs in the absence of subsidization.   
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The next section of this paper formulates a general interdependent security model for an 

arbitrary number of agents with attacks occurring over time. Section 3 solves this model and 

gives the dominant strategies and equilibrium solutions, focusing on the case of agents with 

heterogeneous time preferences. Section 4 discusses the phenomena of tipping and cascading 

in this context, and determines the minimal number of agents that must receive subsidized 

security in order to cause tipping. We also discuss which agents should be targeted in order to 

maximize the beneficial effects of tipping and cascading.  

 

For simplicity, we then focus on the case of agents with homogeneous discount rates. In this 

context, Section 5 studies the stability of equilibrium solutions and explores whether 

subsidizing security investment can increase the stability of the socially optimum solution. 

Section 6 studies the effects of erroneous choices on the equilibrium solutions and whether 

the subsidizing security investment can reduce the adverse effects of erroneous choices. 

Section 7 studies the relationship between subsidization of security investment and the total 

expected social cost, to determine when subsidies can help minimize total costs. Finally, 

Section 8 summarizes the previous sections and discusses the policy implications of our 

work. 

 

2. Model Formulation 

Our basic model allows both direct attacks on an agent, and also indirect attacks (e.g., 

contamination from another agent in the system), as illustrated in Fig. 1. As in Bier and 

Gupta (2005), we assume that the time, t, of a direct attack on any of N agents follows an 

exponential distribution, and may result in an indirect attack on one or more other agents with 

some probability. Like both Kunreuther and Heal (2003) and Bier and Gupta (2005), we 
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assume that an attack on any agent is catastrophic, so that subsequent attacks on the same 

agent are not considered. For i = 1…N, we define the system parameters as follows:  

 iλ = rate of direct attacks on agent i. 

 iλ
~ = total rate of all attacks on agent i (including indirect attacks). 

 = probability that an attack on agent i infects agent j where we define .  ijq 1=iiq

 = discount rate of agent i. ir

 = loss suffered by agent i if it is attacked, either directly or indirectly. iL

 = cost of investing in security for agent i.  This investment is assumed to eliminate 

the risk of direct attacks, but have no effect on the risk of infection by indirect attacks 

from other agents. We assume that

iC

0 1,...,i iC L i N< < ∀ = . 

  = investment strategy for agent i, where is 1=is  if agent i invests in security and 

 if agent i does not invest. 0=is

 , the strategies of other agents. { , }i js s j− = ≠ i

t

i

 = total expected cost borne by agent i when it chooses strategy  (including 

both the cost of investment, if any, and the expected loss due to attacks), given the 

strategies of the other agents. 

( , )i i iP s s− is

 

The expected loss experienced by agent i due to attacks is given by ,  

where

0
( )exp( )i i iL f t rt d

∞
−∫

( ) exp( )i if t tλ λ= −% %

)

is the probability density function for the time of the first attack on 

agent i, and  is the total rate of attacks against agent i. 

Hence, the net present value of the expected loss due to attacks experienced by agent i is 

∑
≠=

−+−=
N

ijj
jjijiii qss

,1

)1()1(~ λλλ

0
( ) exp( ) /(1 /i i i i i i iE Loss L t rt dt L rλ λ

∞
= − − = +∫ % % λ%                                                       (1) 
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The total expected cost to agent i is given by 

( , ) /(1 / )i i i i i i i iP s s s C L r λ− = + + %                                                                                     (2) 

 

3. Equilibrium Solutions 

Definition 1: Nash equilibrium in our model is a set of strategies },...,1,{ Nisi =  such that no 

one agent would be better off by switching strategies unless at least one other agent also 

switched. Thus, at equilibrium, we must satisfy the following system of inequalities: 

( , ) (1 , ) 1,...,i i i i i iP s s P s s i N− −< − ∀ =                                                                              (3) 

 

For simplicity, in the remainder of this paper, we consider the case where only the discount 

rates ( ) of the agents differ. In other words, we letir λλ =i , CCi = , LLi = , and  for 

i, j=1, 2,…, N, 

qqij =

ji ≠ , since the effects of these parameters have already been investigated by 

Kunreuther and Heal (2003). Thus, equation (2) becomes: 

( , ) /(1 / )i i i i i iP s s s C L r λ− = + + %                                                                                      (4) 

where . ∑
≠=

−+−=
N

ijj
ji qss

,1

)1()1(~ λλλ

 

Suppose that in some equilibrium solution, exactly M agents choose to invest ( ). 

Then there are three possible cases:  

NM ≤≤0

(1) All agents choose to invest (M=N);  

(2) Some agents choose to invest and some not (0<M<N); and  

(3) No agents choose to invest (M=0).  

 

Table 1 gives the costs to both investing and non-investing agents in all three cases. It also 

specifies what the costs would be to any given agent that deviates from the equilibrium 
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action , conditional on the other agents’ strategies; i.e.is (1 , )i iP s s i−− . For convenience, in 

Table 1 and throughout the remainder of this paper, we have renumbered the agents so that 

the first M agents choose to invest, and the remaining N-M agents choose not to invest (i.e., 

 and ). Solving the system of inequalities (3) using 

the costs in Table 1 yields conditions for the discount rates at which agents will be willing to 

invest in security at equilibrium. These conditions are summarized in Table 2, using the 

following notation: 

1 1,...,is i= ∀ = ,M N0 1,...,is i M= ∀ = +

 { }2max | ( / 1) /(4 ),N n n C L C Lq n Z += ≤ − ∈% ; 

 ( )2
1( ) / 1 2 / 1 4 / / 2R k L C kq L C qkL Cλ ⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦

, k=0… N~ ; and  

 ( )2
2 ( ) / 1 2 / 1 4 / / 2R k L C kq L C qkL Cλ ⎡ ⎤= − − + − −⎢ ⎥⎣ ⎦

, k=0… N~ . 

Here, is a bound on the number of agents there can be in a system for certain properties to 

hold, and 

N%

1( )R k and 2 ( )R k  are bounds on an agent’s discount rate. By taking derivatives, it is 

easy to show that R1(k) and R2(k) are increasing and decreasing in k, respectively. Also, note 

that R1( N~ )<R2( N~ ), and R1(0)=0. Thus, the following relationship holds, as shown in Fig. 2:  

0 = R1(0) < R1(1) <…<  R1( N~ ) < R2( N~ ) <…< R2(1) < R2(0)                                      (5) 

 

Definition 2: The partition {Sl, l=0…min{N, N~ +1}} of the domain of discount rates is 

defined as follows: 

)),0([)]0(,( 210 +∞−∞= RRS U , 

))1(),([)](),1(( 2211 −−= lRlRlRlRSl U  ,...,1=∀l min{N-1, N~ }, and 

))1(),1(( 21 −−= lRlRSl , l = min{N, N~ +1}.  
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This partition is represented graphically in Fig. 2 for the case where . When , N N≤ % N N> %

1( )R k and 2 ( )R k are not defined for , so  is empty for . k N> %
lS 1l N> +%

 

Definition 3: Given a system in which exactly M agents invest at equilibrium:  

(1) Let Inv(M) be the set of possible discount rates for the M investing agents;  

(2) Let Non(M) be the set of possible discount rates for the N-M non-investing agents; and 

(3) Let  be the set of discount rates that can not be held by 

any agent if exactly M agents invest at equilibrium. 

CMNonMInvMCmpl )]()([)( U=

 

Using the notation above, Table 2 can be rewritten as shown in Table 3, specifying the ranges 

of discount rates possible for both the investing and non-investing agents, given the number 

of agents M investing at equilibrium. These ranges are also illustrated in Figures 3 and 4, for 

the investing and non-investing agents, respectively. (As before, when , some of the  

will be empty.) Note also that the existence of an equilibrium strategy with M investing 

agents implies that no agent has a discount rate in the set . 

N N> %
lS

)(MCmpl

 

Definition 4: Strategy is a dominant strategy for agent i if and only if 

for all .  

is

( , ) (1 , )i i i i i iP s s P s s− < − − is−

 

Theorem 1: If  for some agent i, thenNi Sr ∈ 1=is  is a dominant strategy for agent i (i.e., 

that agent will prefer to invest in security, regardless of the decisions of other agents). 

Conversely, if  for some agent i, then 0Sri ∈ 0=is  is a dominant strategy for that agent 
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Proof: It is possible to show that at least one equilibrium solution always exists (proof 

omitted for reasons of space). Therefore, we can use Table 3 to characterize the possible 

equilibrium solutions. If  for some agent i, then according to Table 3, not investing 

cannot be an equilibrium strategy for this agent.  Therefore, investment must be a dominant 

strategy.  A similar argument holds for the second part of the theorem. 

Ni Sr ∈

 

Theorem 2: Holding all else constant, when the number of agents in the system (N) 

increases, the range of discount rates  for which investing is a dominant strategy becomes 

smaller. If N>

NS

N~ +1, then there is no discount rate for which investing in security is a 

dominant strategy. The range of discount rates  for which not investing is a dominant 

strategy does not depend on N.   

0S

 

Proof: Since 1( )R k and 2 ( )R k are increasing and decreasing in k for k=1… N~ , respectively, 

the set becomes smaller as N increases. For N>))1(),1(( 21 −−= NRNRS N N~ +1, the set  

is empty. The set

NS

)),0([)]0(,( 210 +∞−∞= RRS U does not depend on N, by the definitions of 

1( )R k and 2 ( )R k .   

 

Remark: This theorem implies that for systems with sufficiently large numbers of agents, 

investing in security will not be a dominant strategy for any agent. Agents can of course still 

choose to invest, but will do so in equilibrium only if other agents also invest. 

 

Example 1: We use the following parameters to illustrate the results discussed in Theorem 2: 

C=10; L=1000; q=0.01; λ =0.01; N=2000; and therefore 2450~ =N . Fig. 5 shows the regions 
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of discount rates in which investing and not investing, respectively, are dominant strategies, 

as a function of the number of agents. 

 

The remainder of this paper focuses on the case where no agent has a dominant strategy. In 

other words, we assume that the discount rate of agent i satisfies 0ir S∉  

and .  1,...,i Nr S i N∉ ∀ =

 

Theorem 3: In an N-agent model, if no agent has a dominant strategy, there exist at least two 

equilibrium solutions: {all invest}; and {none invest}. The total cost borne by any given 

agent in the equilibrium {all invest} is lower than the corresponding cost in the equilibrium 

{none invest}, with the difference between these two costs growing with N.    

 

Proof: From Table 3, we have and( )ir Inv N∈ (0)ir Non∈ , which implies that {all invest} 

and {none invest} are both equilibrium solutions. The total cost for agent i equals C  for the 

equilibrium {all invest}, and ( )/ 1 / ( 1)iL r N qλ λ+ + −⎡⎣ ⎤⎦  for the equilibrium {none invest}. 

By the definitions of and , we can show that 2 (0)R lS 2 (0)ir R< and 

[ ] ( )2/ 1 (0) / / 1 / ( 1)iC L R L r N qλ λ λ= + < + + −⎡ ⎤⎦ Ni ,...,1⎣ =∀                                   (6) 

So, the total cost borne by each agent in the equilibrium {all invest} is lower than the 

corresponding cost in the equilibrium {none invest}. Furthermore, as N grows (assuming that 

all other parameters are held constant), straightforward algebra shows that the cost difference 

between the left and right sides of inequality (6) will increase. 

 

Theorem 4: In a homogeneous N-agent model in which the agents have no dominant 

strategy, there exist only two equilibrium solutions: {all invest}; and {none invest}. 
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Proof: Theorem 3 indicates that {all invest} and {none invest} are both equilibrium 

solutions. Suppose that there exists an equilibrium with M investing agents such that 

0<M<N. Then, according to the definition of equilibrium, we must 

have =1…M and)(MInvri ∈ i∀ )(MNonri ∈ i∀ =M+1…N. However, homogeneity implies 

that =1…N, and we know thatrri = i∀ φ=)()( MNonMInv I . Therefore, a contradiction 

has been found.  

 

4. Tipping and Cascading 

We now discuss the possibility of tipping, and its effect on the equilibrium solution. In 

general, starting with an equilibrium in which M agents invest (for M<N), ensuring that some 

additional agents invest will tend to make investing more attractive for the remaining agents. 

In practice, there may be different ways of ensuring that agents invest, such as mandating 

investment in security, or providing subsidized (free) security. In this paper, we focus on the 

latter case. 

 

Definition 5: Given a system in which exactly M agents invest at equilibrium, suppose that h 

additional agents receive subsidized (free) security from a third party ( 0 ). Let h N M≤ ≤ −

( , )cInv M h  be the set of possible discount rates for those agents who did not invest in the 

initial equilibrium, but would find investing attractive if the number of investing agents 

increased from M to M+h. Note that this will include not only agents with discount rates in 

( )Inv M h+ , but also those with discount rates in (Cm )pl M h+ , since there can be an 

equilibrium strategy exactly with M+h investing agents only if no agents have discount rates 

in the set (Cm )pl M h+ . Thus, we will have:  

( , ) ( ) ( ) ( )cInv M h Inv M h Inv M Cmpl M h= + − +U                                                     (7) 
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Here,  is the set operator representing the difference between sets − ( )Inv M h+ and ( )Inv M . 

Let be the cardinality of the set S. Then ( )SΘ [ ]( , )cInv M hΘ  is the number of agents that 

could be induced to invest by tipping. 

 

Remark: It is straightforward to show that [ ]( , )cInv M hΘ  is non-decreasing in h for any 

given value of M, with [ ]( ,0) 0cInv MΘ = .  

 

Starting with an equilibrium in which exactly M agents invest, the number of agents h that 

must receive subsidized security in order to lead to tipping must satisfy [ ]( , ) 0cInv M hΘ > . 

If [ ]{ }, ( , )c cInv M h Inv M h⎡Θ + Θ⎣ 0⎤ >⎦ , then additional agents will to invest when the number 

of investing agents increases from M h+ to [ ]( , )cM h Inv M h+ +Θ , and so on. We call this 

phenomenon “cascading.”  

 

Note that no tipping or cascading will occur if [ ]( , ) 0cInv M hΘ = . The minimal number of 

agents that must receive free security in order to lead to tipping is given 

by ( ){ }min | ( , ) 0ch Inv M h⎡Θ ⎣ ⎤ >⎦ . The discount rates of the subsidized agents are irrelevant to 

determining whether tipping occurs, since this depends only on the total number of agents 

receiving subsidized (free) security. However, the discount rates of the subsidized agents do 

determine whether cascading occurs, and how far it progresses. Therefore, it makes sense to 

target any subsidies at those agents who are least likely to begin investing due to tipping (e.g., 

agents with discount rates in or near the region where not investing is the dominant strategy). 

These arguments are illustrated in the example below; see also Kunreuther and Heal (2003) 

and Dixit (2003). 
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Example 2: Consider an N-agent system in which N< N~ +1 and 1i ir S i−∈ ∀ =1…N. Perusal of 

Fig. 3 indicates that this example, there exists no equilibrium with a non-zero number of 

investing agents. Furthermore, Fig. 4 shows that {none invest} with M=0 investing agents is 

an equilibrium for this example. Now suppose that agent 1 receives free security. Then agent 

N will choose to invest, because 1 (0,1).N N cr S Inv−∈ ⊂  In other words, since agent 1 will 

invest for sure, not investing is no longer optimal for agent N (from Fig. 4). Since agent N 

will be better off investing, there will now be M=2 investing agents. Therefore, agent N-1 will 

also begin investing because  1 2N Nr S− −∈ [ ](1, (0,1) )c cInv Inv⊂ Θ . Similarly, agent N-2 will 

begin investing once there are M=3 investing agents, and so on. Thus, if agent 1 receives free 

security, {all invest} will become the unique equilibrium. Note also that the discount rate of 

the subsidized agent determines how many agents will decide to invest as a result of 

cascading. In this example, it is straightforward to see that if agent i is the one that receives 

free security, the system will end up in a unique equilibrium with M=i investing agents. 

 

5. Stability of Equilibrium Solutions 

For simplicity, we now consider the case of homogeneous time preferences in an N-agent 

model in which no agent has a dominant strategy. In other words, we let =1…N 

for 0<k<min{N, 

iSrr ki ∀∈=

N~ +1}.  

 

Definition 6: In an N-agent homogeneous model, let n be the greatest integer such that, even 

if n agents all change to the opposite strategy, the remaining N-n agents will still not want to 

change their strategies. We then define the stability level of an equilibrium (either {all invest} 

or {none invest}) to be /( 1)n Nα = − .  
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Remark: If 0α = , then the corresponding equilibrium is completely unstable; that is, if even 

one agent changes strategy, then at least one other agent will also prefer to change strategy. 

If 1α = , the corresponding equilibrium is completely stable; no matter how many agents 

change strategies, no other (rational) agent would want to change strategy. Note that the 

stability of Nash equilibrium solutions has been defined variously in other research; see for 

example Damme (1991), Kohlberg and Mertens (1986), and Okada (1981).  

 

Let h be the number of agents receiving subsidized (free) security, such that . Since 

the h agents receiving subsidized (free) security need not incur any cost to invest, we consider 

only the strategies of the N-h non-subsidized agents. Let {all invest}

0 h N≤ ≤

N-h and {none invest}N-h  

be sub-equilibrium solutions describing the possible behavior of these N-h agents.  

 

Theorem 5: Consider a model with N homogeneous agents, where =1…N for 

0<k<min{N, 

iSrr ki ∀∈=

N~ +1}, and assume that a third party offers subsidized (free) security to h 

agents. Then, {all invest}N-h will be a sub-equilibrium for the N-h non-subsidized agents for 

any value of h. This sub-equilibrium has stability ( 1) /( 1k N h )α = − − − if  and 1,h N k≤ − −

1α = if  By contrast, {none invest}.h N k≥ − N-h  is a sub-equilibrium only if , in 

which case its stability is given by 

1h N k≤ − −

( 1) /(N h k N h 1)α = − − − − − . 

 

Proof: If , then after k-1 agents change from investing (in the sub-equilibrium 

{all invest}

1h N k≤ − −

N-h) to not investing, {all invest}N-h-k+1 is still a sub-equilibrium for the remaining 

N-h-k+1 agents, because . However, after k agents change from 

investing to not investing, {all invest}

( 1)kr S Inv N k∈ ⊂ − +

N-h-k is no longer a sub-equilibrium for the remaining N-

h-k agents, because ( )kr S Inv N k∈ ⊄ − . So, n=k-1 is the largest number of agents that can 
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change strategies such that the remaining agents will want to continue investing at sub-

equilibrium. Therefore, {all invest}N-h  has stability ( 1) /( 1k N h )α = − − − . Similarly, it can 

be shown that {none invest}N-h  has stability ( 1) /( 1)N h k N hα = − − − − − 1h N k≤ − − if . 

Now we consider the case . In this case, {all invest}h N k≥ − N-h is a sub-equilibrium for the 

non-subsidized N-h agents, and has stability 1α =  (since for , it is no longer 

possible to have k of the N-h non-subsidized agents change strategies). To see why {none 

invest}

h N k≥ −

N-h  is not a sub-equilibrium in this case, note that if all of the N-h non-subsidized 

agents choose not to invest, there will be only M=h investing agents. From Table 3, we know 

that {none invest}N-h  will be a sub-equilibrium for the N-h non-subsidized agents if and only 

if , or equivalently ( )kr S Non h∈ ⊂ 1h N k≤ − − .                                                                                               

 

Remark: If =1…N, the stability of the sub-equilibrium {all invest}iSrr ki ∀∈= N-h is 

increasing in h for , and equals 1 (i.e., completely stable) when h N agents 

receive subsidized (free) security.  

1,h N k≤ − − k≥ −

 

Theorem 6: If both {all invest}N-h and {none invest}N-h  are possible sub-equilibrium 

solutions, then {all invest}N-h will be more stable than {none invest}N-h when , 

or equivalently when . (Here, 

( ) /k N h> − 2

min{ 1, 1}

( ) / 2 1

N N

l
l N h

r S
+ −

= − +⎢ ⎥⎣ ⎦

∈
%

U x⎢ ⎥⎣ ⎦ is the floor function, giving the greatest 

integer less than or equal to x.) Conversely, {none invest}N-h  will be more stable than {all 

invest} N-h when , or equivalently when . If N-h is even, then the 

two sub-equilibrium solutions will be equally stable when

( ) /k N h< − 2 S

2

( ) / 2

1

N h

l
l

r
−⎢ ⎥⎣ ⎦

=

∈ U

( ) /k N h= − , or . ( ) /N hr S −∈ 2

 

Proof: Follows directly Theorem 5. 
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Remark: Generally, {all invest}N-h will tend to be more stable than {none invest}N-h when 

the discount rate of the (homogeneous) agents is close to the region where investing is 

dominant ( ). Similarly, {none invest}NS N-h will be more stable than {all invest}N-h when the 

discount rate is close to the region where not investing is dominant ( ). If N-h is even, then 

there exists a middle range ( ) where the two sub-equilibrium solutions are equally 

stable. This is illustrated in Fig. 6 for the case h=0. 

0S

( ) /N hS − 2

 

6. Erroneous Choice 

In a model with N homogeneous agents, where kSr ∈ for 0<k<N, we have shown that the 

equilibrium {all invest} is the social optimum, and moreover has lower cost than the 

equilibrium {none invest} for any given agent individually. Therefore, it may be reasonable 

to expect that any rational agent would choose to invest in this case. However, in practice, 

some agents may choose not to invest even when it would be in their interest to do so. We 

denote such behavior an erroneous choice. In this section, rather than assuming that all of the 

N (homogenous) agents make the same choice (as in Section 5), we assume that some agents 

(at random) erroneously choose not to invest, and the remaining agents choose whichever 

strategy will be the social optimum in light of the number of erroneous choices. We here 

examine the effect of erroneous choice on the sub-equilibrium solutions for the remaining 

agents who do not make errors. We also examine how subsidization of security investment 

can be used to help counteract any adverse effect of erroneous choices.  

 

Let h be the number of agents receiving subsidized (free) security, and let x be the number of 

agents making erroneous choices, such that 0 x N h≤ ≤ − . Since the h agents receiving 

subsidized (free) security need not incur any cost to invest, we consider only the strategies of 

the N-h-x non-subsidized agents who do not make erroneous choices. Let {all invest}N-h-x and 
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{none invest}N-h-x  be sub-equilibrium solutions describing the possible behavior of these N-h-

x agents.  

 

Theorem 7: If subsidized (free) security is provided to h N  agents, then no matter how 

many agents x make erroneous choices, {all invest}

k≥ −

N-h-x will be the unique sub-equilibrium 

for those non-subsidized agents not making erroneous choices. Similarly, if x k≥  agents 

make erroneous choices, then {none invest}N-h-x will be the unique sub-equilibrium for those 

non-subsidized agents not making erroneous choices. If 1 1x k N h+ ≤ ≤ − − , then {all 

invest}N-h-x and {none invest}N-h-x are both possible sub-equilibrium solutions. In this case, 

the total cost borne by any of the N agents individually in {all invest}N-h-x (when h agents 

receive subsidized security, x agents make erroneous choices, and N-h-x agents invest) is 

lower than the corresponding cost when the N-h-x agents do not invest. This implies that {all 

invest}N-h-x is the socially optimal sub-equilibrium. 

 

Proof: Since the agents are assumed to be homogeneous, by Theorem 4 we know that all of 

the non-subsidized N-h-x agents not making erroneous choices will choose the same strategy 

in any sub-equilibrium. If all of these N-h-x agents choose to invest, then there will be a total 

of M=N-x investing agents (including the h agents receiving free security). From Table 3, we 

know that {all invest}N-h-x will be a sub-equilibrium for the N-h-x non-subsidized agents not 

making erroneous choices if and only if ( )kr S Inv N x∈ ⊂ − , or equivalently  

1k x≥ +                                                                                                                        (8) 

In this case, Table 1 indicates that the total cost borne by each of the agents receiving 

subsidized (free) security is given by [ ]1 / 1 /( )SubC L r xqλ≡ + ; the total cost borne by each of 

the non-subsidized N-h-x agents not making erroneous choices is given by 

[ ]/ 1 /( )InvC C L r xqλ= + + , where C>0 is the cost for any one agent to invest in security; and 
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the total cost borne by each of the x agents making erroneous choices is given 

by [ ]/ 1 /( ( 1) )ErrC L r x qλ λ≡ + + − .  

 

Similarly, if all of the remaining N-h-x agents choose not to invest, then there will be only 

M=h investing agents.  Again, from Table 3, {none invest}N-h-x will be a sub-equilibrium for 

these N-h-x agents if and only if , or equivalently  ( )kr S Non h∈ ⊂

1k N h≤ − −                                                                                                                 (9) 

In this case, Table 1 shows that the total cost borne by each of the agents receiving free 

security is given by ( )2 / 1 / ( )SubC L r N h qλ⎡≡ + −⎣ ⎤⎦ , and the total cost borne by any of the N-h 

non-subsidized agents is given by ( )/ 1 / ( 1)NonC L r N h qλ λ⎡ ⎤≡ + + − −⎣ ⎦ . 

  

There will always exist at least one sub-equilibrium, because at least one of inequalities (8) 

and (9) will hold (by the assumption that 0 ,x N h≤ ≤ −  and the fact that x, h, k, and N are all 

integers). If , then {none invest}h N k≥ − N-h-x will not be a possible sub-equilibrium solution, 

so {all invest}N-h-x will be the unique sub-equilibrium for all values of .x N h≤ −  Conversely, 

if x k≥ , then {all invest}N-h-x will not be a sub-equilibrium, so {none invest}N-h-x will be the 

unique sub-equilibrium for all values of 1h N k≤ − − . Finally, if 1 1x k N h+ ≤ ≤ − − , then 

{all invest}N-h-x and {none invest}N-h-x will both be sub-equilibrium solutions. In this case, we 

will have  ,  and  (proof omitted for reasons of space). Thus, 

the costs borne by any of the N agents individually in the sub-equilibrium {all invest}

Inv NonC C< Err NonC C≤ 1Sub SubC C≤ 2

N-h-x  

will be less than or equal to the corresponding costs in the sub-equilibrium {none invest}N-h-x.  
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Remark: If those non-subsidized agents not making erroneous choices always choose the 

social optimum, then they will choose to invest whenever the sub-equilibrium {all invest}N-h-x 

exists.  

 

Theorem 8: Suppose that each non-subsidized agent independently makes an erroneous 

choice with probability ε , where 0 1.ε≤ ≤  In this case, the number of agents X making 

erroneous choices is a random variable with binomial probability mass function given 

by ( ) (1 )x N h xN h
P X x

x
ε ε − −−⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

. Let  be the probability that {all invest}InvP N-h-X is a sub-

equilibrium for those non-subsidized agents not making erroneous choices. Then, we have 

 if , and 1InvP = h N k≥ −
1

0

(1 )
k

x N h x
Inv

x

N h
P

x
ε ε

−
− −

=

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  if 1h N k≤ − − . 

 

Proof: From Theorem 7, if h N , then we must havek≥ − 1InvP = , since {all invest}N-h-x is the 

unique sub-equilibrium for any value of x in that case. From inequality (8), if , then 

the probability that {all invest}

h N k≥ −

N-h-X is a sub-equilibrium is given by ( 1)InvP P X k= ≤ − .   

 

Remarks: If fewer than N-k agents receive subsidized (free) security, then  will be 

increasing in the number of agents h receiving free security (all else constant), in part because 

provision of free security to a larger number of agents reduces the maximum possible number 

of agents who could make erroneous choices.  is also increasing in k, where  is the 

discount rate of the (homogeneous) agents; that is, as r gets closer to the region where 

investing is dominant (all else constant), it becomes more likely that investing will be a sub-

equilibrium for the N-h-X non-subsidized agents not making erroneous choices. All else 

constant,  is also decreasing in both the error probability

InvP

InvP kr S∈

InvP ε  and the number of agents N. 
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The above observations are based on known properties of the binomial distribution (Bickel 

and Doksum, 2001).  

 

7. Total Social Cost  

Let be the cost to a third party of providing subsidized (free) security to h agents,  

 be the total (expected) costs actually paid by the N agents, and  

be the total (expected) social cost. In the case described in Section 5 (where all non-

subsidized agents make the same choice), Theorem 4 shows that there are only two possible 

sub-equilibrium solutions. For the sub-equilibrium {all invest}

)(hCF

( )AC h ( ) ( ) ( )S F AC h C h C h= +

N-h, we have  

( ) ( )AC h N h C= −                                                                                                       (10) 

For {none invest}N-h, we have  

2( ) ( )A Sub NonC h hC N h C= + −                                                                                      (11) 

Here,  and  are as defined in the proof of Theorem 7. In the case described in 

Section 6 (involving erroneous choices), if , then we have 

2SubC NonC

h N k≥ −

[ 1
0

( ) ( ) ( )
N h

A Inv Err Sub
x

C h P X x N h x C xC hC
−

=

= = − − + +∑ ]

]

)

                                             (12) 

 Similarly, if , 1h N k≤ − −

[ ] [
1

1 2
0

( ) ( ) ( ) (1 ) ( )
k

A Inv Err Sub Inv Non Sub
x

C h P X x N h x C xC hC P N h C hC
−

=

= = − − + + + − − +∑       (13) 

Here, , , , , and  are as defined in the proof of Theorem 7, and  and 

 are as given in Theorem 8. 

InvC ErrC NonC 1SubC 2SubC InvP

(P X x=

 

Theorem 9 As defined in equalities (10)-(13), the total cost  borne by agents is non-

increasing in the number of agents receiving subsidized (free) security; i.e., agents will in 

general benefit from subsidized (free) security. 

( )AC h
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Proof: Omitted for reasons of space.  

 

We now explore the effect of providing subsidized (free) security to a subset of agents on the 

total (expected) social cost, by considering three possible functional forms for , all of 

which satisfy  (where for simplicity, we treat h as a continuous variable): 

( )FC h

( ) /FdC h dh C≤

(1) ; i.e., the cost to a third party of providing security is the same as the 

cost to the agents themselves. 

( )FC h Ch=

(2) increasing and concave, with ( )FC h ( ) /FdC h dh C h≤ ∀ ; i.e., a third party can 

provide security at lower cost than the individual agents could (e.g., due to economies of 

scale).  

 (3) constant in h. This is a bounding case, in which once security technology 

(e.g., anti-virus software) has been developed, it can be provided to any number of agents at 

no additional cost. In this case, it would be clearly be optimal to give free security to all 

agents, provided that the constant is sufficiently small relative to . 

( )FC h

( )FC h (0)AC

  

Example 3: In this example, we now numerically explore the effects of offering subsidized 

(free) security for the case discussed in Section 5 (where all non-subsidized agents make the 

same choice), using the following parameters: C=10; L=1000; q=0.01; λ =0.01; k=1200; and 

N=2000. Fig. 7 shows the stability of {all invest}N-h and {none invest}N-h as a function of h. 

Providing subsidized (free) security increases the stability of {all invest}N-h and decreases the 

stability of {none invest}N-h, as predicted by Theorem 5. Fig. 8 shows the cost  borne 

by the agents as a function of h. For the social optimum {all invest}

( )AC h

N-h, Fig. 8 also shows the 

total social cost  as a function of h, for three different assumptions about ; note 

that is non-increasing in all three cases. For the sub-equilibrium {none invest}

( )SC h ( )FC h

( )SC h N-h, 
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( )SC h  is decreasing in all three cases; however, the results are not shown in Fig. 8, since for 

{none invest}N-h, is approximately equal to , so would not be clearly visible in 

the figure.  

( )SC h ( )AC h

 

From Theorems 7 and 9, we know that subsidization of security will in general decrease the 

total costs borne by the agents in both {all invest}( )AC h N-h and {none invest}N-h, and 

moreover ensures that {all invest}N-h is the unique sub-equilibrium whenever h N . 

Provided that the rate of attacks is sufficiently large that {all invest} would be an equilibrium 

solution (in the absence of errors), then extensive numerical results suggest that will be 

non-decreasing in h (as shown in Fig. 8) for both the case in Section 5 and the case of 

erroneous choice discussed in Section 6.  However, we have not been able to prove this.  In 

order to prove this speculation, it would be sufficient to prove that , since we 

know that .  If our speculation is true, this would suggest that in order 

to minimize the total (expected) social costs, all agents should receive subsidized (free) 

security (i.e., h=N) in cases where investing in security is the social optimum and security 

can be provided at lower cost by a third party than by the agents themselves. 

k≥ −

( )SC h

( ) /AdC h dh C≤ −

( ) ( ) ( )S F AC h C h C h= +

 

8. Conclusions 

Sections 2-4 of this paper formulate and solve an interdependent security model for an 

arbitrary number of agents with attacks occurring over time, focusing on the case of agents 

with heterogeneous time preferences. Results show that while multiple equilibrium solutions 

can exist, the social optimum in such cases is for all agents to invest. In order to help achieve 

this social optimum, the role of tipping and cascading is discussed. In particular, we explore 

the minimal number of agents who would need to receive subsidized (free) security in order 
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for tipping to occur, and which agents should receive such free security. In this paper, we 

focus primarily on the effect of discount rates; in particular, the fact that the existence of 

agents with extreme discount rates can make it undesirable for other agents to invest. 

However, similar results hold for heterogeneity in other parameters (such as the cost of 

investing in security, and the loss experienced as the result of a successful attack). 

 

Sections 5-7 further investigate the effect of providing subsidized (free) security on both the 

stability of equilibrium solutions and the total social cost, in the case of homogeneous 

discount rates. Results show that subsidization can increase the stability of the socially 

optimum equilibrium solution (in which all agents invest), reduce or eliminate the adverse 

effect of erroneous choices, and also decrease the total (expected) social cost of achieving the 

social optimum. Our work suggests that under appropriate circumstances, providing 

subsidized security to some agents will: (1) ensure that even agents for which not investing 

would otherwise be dominant do actually invest (through careful targeting of the subsidies to 

those agents); (2) lead to tipping and cascading, thereby causing additional agents to invest; 

(3) increase the stability of the socially optimum equilibrium in which all agents invest; (4) 

counteract the effect of erroneous choices; and (5) decrease the (expected) total social costs. 

Thus, it might sometimes be worthwhile for third parties (such as governments) to subsidize 

the provision of security, or otherwise ensure that the strategy of investing in security is 

adopted when it is the social optimum, since that might not otherwise occur. 
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Table 1: Agent costs at equilibrium 
For investing agents (i=1,…, M), 1=is  For not-investing agents (i=M+1,…, N), 0=is   

( , )i i iP s s−  (1 , )i iP s s i−−  ( , )i i iP s s−  (1 , )i iP s s i−−  
Case (1) 
M=N  

C  )~/1/(L λir+ , λλ =
~  N/A N/A 

Case (2) 
0<M<N 

/(1 / )iC L r λ+ + %  

λλ qMN )(~
−=  

/(1 / )iL r λ+ %  

λλλ qMN )(~
−+=  

/(1 / )iL r λ+ %  

λλλ qMN )1(~
−−+=  

/(1 / )iC L r λ+ + %  

λλ qMN )1(~
−−=  

Case (3) 
M=0  

N/A 
 
 

 

N/A )~/1/(L λir+  

λλλ qN )1(~
−+=  

/(1 / )iC L r λ+ + %  

λλ qN )1(~
−=  

 

Table 2: Conditions for an equilibrium in which M agents invest 

 For investing agents  
(i=1,…, M), 1=is  

For not-investing agents  
(i=M+1,…, N), 0=is  

Case (1): M=N  )0()0(0 21 RrR i <<=  N/A 

Case (2):* m  ax{ ,0}N N M N− < <%
1 2( ) ( )iR N M r R N M− < < −

 
)1(1 −−< MNRri or )1(2 −−> MNRri  

Case (3): M=0  N/A 0ir ≥  
*No equilibrium is possible with0 . max{ ,0}M N N< < − %

 

Table 3: Conditions for an equilibrium in which M agents invest, in terms of the { } lS

 )(MNon  
(Ranges of discount rates 
of non-investing agents) 

)(MCmpl  
(Ranges of discount rates 
not held by any agents) 

)(MInv  
(Ranges of discount rates 

of investing agents) 
Case (1): M=N  

N/A 0S  U
},1~min{

1

NN

l
lS

+

=

 

Case (2):* m  ax{ ,0}N N M N− < <%
U

1

0

−−

=

MN

l
lS  MNS −  U

},1~min{

1

NN

MNl
lS

+

+−=

 

Case (3): M=0  
U

}1,1~min{

0

−+

=

NN

l
lS  N/A N/A 

*No equilibrium is possible with0 . max{ ,0}M N N< < − %
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Figure Captions 
 
 
Fig. 1: Model structure 

Fig. 2: Illustration of the ranges  lS

Fig. 3: Ranges of discount rates possible for M agents investing 

Fig. 4: Ranges of discount rates possible for non-investing agents when M agents invest 

Fig. 5: Discount rates for which investing and not investing are dominant 

Fig. 6: Stability of equilibrium solutions in an N-agent homogeneous model 

Fig. 7: Stability of the sub-equilibrium solutions {all invest}N-h and {none invest}N-h  
 
Fig. 8: Total costs of the sub-equilibrium solutions {all invest}N-h and {none invest}N-h 
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jiq  
Agent i Agent j 
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……………  

 27DRAFT



 
 
 
 
0S                …                                           …                                      1S 2S 1−NS NS 1−NS 2S 1S 0S

0 =  …)0(1R )1(1R )2(1R )2(1 −NR )1(1 −NR )1(2 −NR )2(1 −NR  …        )2(2R )1(2R )0(2R

 28DRAFT



 

 
 
M=N 

                                                                M=N-1 
                                                                M=N-2 
                                                                   … 

M=2 
                                                                 M=1 
                                                                     

0S                                                                                                        1S 2S 1−NS NS 1−NS 2S 1S 0S
0 =  …)0(1R )1(1R )2(1R )2(1 −NR )1(1 −NR )1(2 −NR )2(2 −NR  …        )2(2R )1(2R )0(2R

 29DRAFT



 
 
 
 
M=N-1                                                                                                                             M=N-1 
    M=N-2                                                                                                           M=N-2 
             M=N-3                                                                                         M=N-3 
                                                                   …  

M=1                                                           M=1 
                                                M=0                        M=0 
                                                                     

0S                                                                                                          1S 2S 1−NS NS 1−NS 2S 1S 0S
0 =  …)0(1R )1(1R )2(1R )2(1 −NR )1(1 −NR )1(2 −NR )2(1 −NR  …        )2(2R )1(2R )0(2R

 30DRAFT



 
 

 31DRAFT



 
 
 
 
 
          
                                                                

{All invest} 
dominant

{None invest} 
dominant

 
 

0S                …                                           …                                      1S 2S 1−NS NS 1−NS 2S 1S 0S
0=  …)0(1R )1(1R )2(1R )2(1 −NR )1(1 −NR )1(2 −NR )2(1 −NR  …    r )2(2R )1(2R )0(2R

 
 If N even, equally stable

{None invest} 
more stable 

{All invest} 
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