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Abstract 
 
Techniques for augmenting the automation of routine coordination are rapidly reaching a 
level of effectiveness where they can simulate realistic coordination on the ground for 
large numbers of emergency response entities (e.g. fire engines, police cars) for the sake 
of training. Furthermore, it seems inevitable that future disaster response systems will 
utilize such technology. We have constructed a new system, DEFACTO (Demonstrating 
Effective Flexible Agent Coordination of Teams through Omnipresence), that integrates 
state-of-the-art agent reasoning capabilities and 3D visualization into a unique high 
fidelity system for training incident commanders. The DEFACTO system achieves this 
goal via three main components: (i) Omnipresent Viewer - intuitive interface, (ii) Proxy 
Framework - for team coordination, and (iii) Flexible Interaction - between the incident 
commander and the team. We have performed detailed preliminary experiments with 
DEFACTO in the fire-fighting domain. In addition, DEFACTO has been repeatedly 
demonstrated to key police and fire department personnel in Los Angeles area, with very 
positive feedback. 
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Abstract

Techniques for augmenting the automation of routine coordi-
nation are rapidly reaching a level of effectiveness where they
can simulate realistic coordination on the ground for large
numbers of emergency response entities (e.g. fire engines,
police cars) for the sake of training. Furthermore, it seems
inevitable that future disaster response systems will utilize
such technology. We have constructed a new system, DE-
FACTO (Demonstrating Effective Flexible Agent Coordina-
tion of Teams through Omnipresence), that integrates state-
of-the-art agent reasoning capabilities and 3D visualization
into a unique high fidelity system for training incident com-
manders. The DEFACTO system achieves this goal via three
main components: (i) Omnipresent Viewer - intuitive inter-
face, (ii) Proxy Framework - for team coordination, and (iii)
Flexible Interaction - between the incident commander and
the team. We have performed detailed preliminary experi-
ments with DEFACTO in the fire-fighting domain. In addi-
tion, DEFACTO has been repeatedly demonstrated to key po-
lice and fire department personnel in Los Angeles area, with
very positive feedback.

Introduction
In the wake of large-scale national and international terrorist
incidents, it is critical to provide first responders and res-
cue personnel with tools and techniques that will enable
them to evaluate response readiness and tactics, measure
inter-agency coordination and improve training and decision
making capability. We focus in particular on building tools
for training and tactics evaluation for incident commanders,
who are in charge of managing teams of fire fighters at criti-
cal incidents. Such tools would provide intelligent software
agents that simulate first responder tactics, decisions, and
behaviors in simulated urban areas and allow the incident
commander (human) to interact. These agents form teams,
where each agent simulates a fire engine, which plans and
acts autonomously in a simulated environment. Through in-
teractions with these software agents, an incident comman-

∗This research was supported by the United States Department
of Homeland Security through the Center for Risk and Economic
Analysis of Terrorism Events (CREATE). However, any opinions,
findings, and conclusions or recommendations in this document are
those of the author and do not necessarily reflect views of the U.S.
Department of Homeland Security.

der can evaluate tactics and realize the consequences of key
decisions, while responding to such disasters.

To this end, we have constructed a new system, DE-
FACTO (Demonstrating Effective Flexible Agent Coordina-
tion of Teams through Omnipresence). DEFACTO incorpo-
rates state of the art artificial intelligence, 3D visualization
and human-interaction reasoning into a unique high fidelity
system for training incident commanders. By providing the
incident commander interaction with the coordinating agent
team in a complex environment, the commander can gain
experience and draw valuable lessons that will be applicable
in the real world. The DEFACTO system achieves this via
three main components: (i) Omnipresent Viewer - intuitive
interface, (ii) Proxy Framework - for team coordination, and
(iii) Flexible Interaction - between the incident commander
and the team.

Omnipresent Viewer:As sensor capabilities and networks
improve, command and control centers will have access to
very large amounts of up-to-date information about the en-
vironment. A key open question is how that information can
be used to allow most effective incident command decision-
making. We are exploring one promising option that lever-
ages advances in 3D visualization and virtual reality: a
viewer for virtual omnipresence.

Proxy Framework:Techniques for automation of routine
coordination are rapidly reaching a level of effectiveness and
maturity where they can be applied to incident commander
training simulations. To examine the impact of such tech-
nology, we have included state-of-the-art autonomous coor-
dination into the heart of the DEFACTO system. This allows
other aspects of the system to be developed with a realistic
representation of how the coordination will proceed. Con-
versely, it can assist developers of coordination technology
to identify the key problems for real-world deployment of
their technology.

Flexible Interaction: Previous work has shown that
in a multiagent context, flexible interactions between au-
tonomous agents and humans are critical to the success of
the system. While intuitive human interfaces and intelli-
gent team coordination are important, critical failures will
occur unless human-agent interaction is appropriately man-
aged. Hence, we are developing new, flexible techniques for
managing this interaction. These techniques build on theo-
ries of teamwork to manage the distributed response (Scerri,
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Pynadath, & Tambe 2002).
Training incident commanders provides a dynamic sce-

nario in which decisions must be made correctly and quickly
because human safety is at risk. However, it also holds po-
tential for agents to take on responsibility in order to free the
humans involved from being unnecessarily overburdened in
a time of crisis. When using DEFACTO, incident comman-
ders have the opportunity to see the disaster and the coordi-
nation/resource constraints unfold so that they can be better
prepared when commanding over an actual disaster. Apply-
ing DEFACTO to disaster response holds a great potential
benefit to the training of incident commanders in the fire
department. DEFACTO has been repeatedly demonstrated
to key police and fire department personnel in Los Angeles
area with very positive feedback.

In addition, we have performed detailed preliminary ex-
periments with DEFACTO being used as a training tool in
the firefighting domain. We present results from these ex-
periments that reveal results pointing to the value of using
such tools. First, contrary to previous results (Scerriet al.
2003), human involvement is not always beneficial to an
agent team; despite their best efforts, humans may some-
times end up hurting an agent team’s performance. Second,
increasing the number of agents in an agent-human team
may degrade the team performance, even though increasing
the number of agents in a pure agent team under identical
circumstances improves team performance. These results
illustrate that DEFACTO can create a challenging environ-
ment for incident commanders, and that there is a need for
the flexible interaction strategies between teams and inci-
dent commanders incorporated into DEFACTO (which do-
main experts verify is a requirement in this domain (LAFD
2001)).

With DEFACTO, our objective is to both enable the
human to have a clear idea of the team’s state and im-
prove agent-human team performance. We want DEFACTO
agent-human teams to better prepare firefighters for current
human-only teams and better prepare them for the future, in
which agent-human teams will be inevitable and invaluable.
We believe that leveraging the above aspects DEFACTO will
result in better disaster response methods and better incident
commanders.

System Overview
First, DEFACTO incorporates a visualizer that allows for the
human to have anomnipresentinteraction with remote agent
teams. We refer to this as the Omni-Viewer (see Figure 1),
and it combines two modes of operation. The Navigation
Mode allows for a navigable, high quality 3D visualization
of the world, whereas the Allocation Mode provides a tra-
ditional 2D view and a list of possible task allocations that
the human may perform. Human experts can quickly absorb
on-going agent and world activity, taking advantage of both
the brain’s favored visual object processing skills (relative
to textual search, (Paivio 1974)), and the fact that 3D repre-
sentations can be innately recognizable, without the layer of
interpretation required of map-like displays or raw computer
logs. The Navigation mode enables the human to understand
the local perspectives of each agent in conjunction with the

Disaster Scenario

Proxy

Proxy

Proxy

Proxy

Team

Omni-Viewer

DEFACTO

Navigation Allocation

Incident 
Commander

Figure 1: DEFACTO system architecture.

global, system-wide perspective that is obtained in the Allo-
cation mode.

Second, DEFACTO utilizes a proxy framework that han-
dles both the coordination and communication for the
human-agent team (see Figure 1). We use coordination al-
gorithms inspired by theories of teamwork to manage the
distributed response (Scerri, Pynadath, & Tambe 2002). The
general coordination algorithms are encapsulated inproxies,
with each team member having its own proxy and represent-
ing it in the team.

Third, we also use the above mentioned proxy frame-
work to implement adjustable autonomy (AA) between each
member of the human-agent team. The novel aspect of DE-
FACTO’s flexible AA is that we generalize the notion of
strategiesfrom single-agent single-human context to agent-
team single-human. In our work, agents may flexibly choose
among team strategies for adjustable autonomy instead of
only individual strategies; thus, depending on the situation,
the agent team has the flexibility to limit human interaction,
and may in extreme cases exclude humans from the loop.

Domain

The DEFACTO system is currently focused on illustrating
the potential of future disaster-response to disasters that may
arise as a result of large-scale terrorist attacks. Constructed
as part of the effort at the first center for research excellence
on homeland security (the CREATE center), DEFACTO is
motivated by a scenario of great concern to first responders
within Los Angeles and other metropolitan areas. In our
consultations with the Los Angeles fire department and per-
sonnel from the CREATE center, this scenario is of great
concern. In particular, a shoulder-fired missile could poten-
tially be used to attack a low-flying civilian jet-liner that is
preparing to land at Los Angeles International Airport caus-
ing the jet-liner to crash into an urban area and resulting in a
large-scale disaster on the ground. This scenario could lead
to multiple fires in multiple locations with potentially many
critically injured civilians. While there are many longer-
term implications of such an attack, we focus on assisting
first responders, namely fire fighters.
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(a) (b)

Figure 2: Current Training Methods: (a) projected photo and
(b) incident commanders at a table

We had the opportunity to study the current methods that
the Los Angeles Fire Department (LAFD) implements to
train incident commanders. The LAFD uses a projection
screen to simulate the disaster (Figure 2-(a)). In addition,
the participating incident commander is seated at a desk,
directing an assistant to take notes (Figure 2-(b)). Other
firefighters remain in the back of the room and communi-
cate to the incident commander via radios. Firefighters are
taken temporarily out of duty in order to help act out these
pre-determined scenarios in order to test the incident com-
mander’s abilities. DEFACTO aims to automate this process
and enable higher fidelity and larger scale training scenari-
ons which require less personnel.

Underlying Technologies
In this section, we will describe the technologies used in
three major components of DEFACTO: the Omni-Viewer,
proxy-based team coordination, and proxy-based adjustable
autonomy. The Omni-Viewer is an advanced human inter-
face for interacting with an agent-assisted response effort.
The Omni-Viewer provides for both global and local views
of an unfolding situation, allowing a human decision-maker
to obtain precisely the information required for a particular
decision. A team of completely distributed proxies, where
each proxy encapsulates advanced coordination reasoning
based on the theory of teamwork, controls and coordinates
agents in a simulated environment. The use of the proxy-
based team brings realistic coordination complexity to the
prototype and allows more realistic assessment of the inter-
actions between humans and agent-assisted response. These
same proxies also enable us to implement the adjustable au-
tonomy necessary to balance the decisions of the agents and
human.

We have applied DEFACTO to a disaster rescue domain,
where the incident commander of the disaster acts as thehu-
man userof DEFACTO. We focus on two urban areas: a
square block that is densely covered with buildings (we use
one from Kobe, Japan) and the University of Southern Cali-
fornia (USC) campus, which is more sparsely covered with
buildings. In our scenario, several buildings are initially on
fire, and these fires spread to adjacent buildings if they are
not quickly contained. The goal is to have a human inter-

act with the team of fire engines in order to save the most
buildings. Our overall system architecture applied to disas-
ter response can be seen in Figure 1.

Omni-Viewer

Our goal of allowing fluid human interaction with agents re-
quires a visualization system that provides the human with
a global view of agent activity as well as shows the local
view of a particular agent when needed. Hence, we have
developed an omnipresent viewer, or Omni-Viewer, which
will allow the human user diverse interaction with remote
agent teams. While a global view is obtainable from a two-
dimensional map, a local perspective is best obtained from
a 3D viewer, since the 3D view incorporates the perspective
and occlusion effects generated by a particular viewpoint.
The literature on 2D- versus 3D-viewers is ambiguous. For
example, spatial learning of environments from virtual nav-
igation has been found to be impaired relative to studying
simple maps of the same environments (Richardson, Mon-
tello, & Hegarty 1999). On the other hand, the problem may
be that many virtual environments are relatively bland and
featureless. Ruddle points out that navigating virtual en-
vironments can be successful if rich, distinguishable land-
marks are present (Ruddle, Payne, & Jones 1997).

To address our discrepant goals, the Omni-Viewer incor-
porates both a conventional map-like 2D view, Allocation
Mode (Figure 3-d), and a detailed 3D viewer, Navigation
Mode (Figure 3-b). The Allocation mode shows the global
overview as events are progressing and provides a list of
tasks that the agents have transfered to the human. The
Navigation mode shows the same dynamic world view, but
allows for more freedom to move to desired locations and
views. In particular, the user can drop to the virtual ground
level, thereby obtaining the world view (local perspective) of
a particular agent. At this level, the user can “walk” freely
around the scene, observing the local logistics involved as
various entities are performing their duties. This can be
helpful in evaluating the physical ground circumstances and
altering the team’s behavior accordingly. It also allows the
user to feel immersed in the scene where various factors
(psychological, etc.) may come into effect.

In order to prevent communication bandwidth issues, we
assume that a high resolution 3D model has already been
created and the only data that is transfered during the dis-
aster are important changes to the world. Generating this
suitable 3D model environment for the Navigation mode
can require months or even years of manual modeling ef-
fort, as is commonly seen in the development of commercial
video-games. However, to avoid this level of effort we make
use of the work of You et. al. (Suya You & Fox 2003) in
rapid, minimally assisted construction of polygonal models
from LiDAR (Light Detection and Ranging) data. Given the
raw LiDAR point data, we can automatically segment build-
ings from ground and create the high resolution model that
the Navigation mode utilizes. The construction of the USC
campus and surrounding area required only two days using
this approach. LiDAR is an effective way for any new geo-
graphic area to be easily inserted into the Omni-Viewer.
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(a) (b) Navigation Viewer (c)

(d) Allocation Viewer (e) (f)

Figure 3: Omni-Viewer during a scenario: (a) Multiple fires start across the campus, (b) The Incident Commander uses the
Navigation mode to quickly grasp the situation, (c) Navigation mode shows a closer look at one of the fires, (d) Allocation
mode is used to assign a fire engine to the fire, (e) The fire engine has arrived at the fire, (f) The fire has been extinguished.

Proxy: Team Coordination
A key hypothesis in this work is that intelligent distributed
agents will be a key element of a future disaster response.
Taking advantage of emerging robust, high bandwidth com-
munication infrastructure, we believe that a critical role of
these intelligent agents will be to manage coordination be-
tween all members of the response team. Specifically, we are
using coordination algorithms inspired by theories of team-
work to manage the distributed response (Scerri, Pynadath,
& Tambe 2002). The general coordination algorithms are
encapsulated inproxies, with each team member having its
own proxy and representing it in the team. The current ver-
sion of the proxies is calledMachinetta(Scerriet al. 2003)
and extends the successful Teamcore proxies (Pynadath &
Tambe 2003). Machinetta is implemented in Java and is
freely available on the web. Notice that the concept of a
reusable proxy differs from many other “multiagent toolk-
its” in that it provides the coordinationalgorithms, e.g., al-
gorithms for allocating tasks, as opposed to theinfrastruc-
ture, e.g., APIs for reliable communication.

Communication: communication with other proxies
Coordination: reasoning about team plans and communi-

cation
State: the working memory of the proxy
Adjustable Autonomy: reasoning about whether to act au-

tonomously or pass control to the team member
RAP Interface: communication with the team member

Figure 4: Proxy Architecture

The Machinetta software consists of five main modules,
three of which are domain independent and two of which are
tailored for specific domains. The three domain independent
modules are for coordination reasoning, maintaining local
beliefs (state) and adjustable autonomy. The domain spe-
cific modules are for communication between proxies and
communication between a proxy and a team member. The
modules interact with each other only via the local state with
a blackboard design and are designed to be “plug and play.”
Thus new adjustable autonomy algorithms can be used with
existing coordination algorithms. The coordination reason-
ing is responsible for reasoning about interactions with other
proxies, thereby implementing the coordination algorithms.
The adjustable autonomy algorithms reason about the inter-
action with the team member, providing the possibility for
the team member to make any coordination decision instead
of the proxy.
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Teams of proxies implementteam oriented plans(TOPs)
which describe joint activities to be performed in terms of
the individualroles to be performed and any constraints be-
tween those roles. Generally, TOPs are instantiated dynam-
ically from TOP templates at runtime when preconditions
associated with the templates are filled. Typically, a large
team will be simultaneously executing many TOPs. For ex-
ample, a disaster response team might be executing multiple
fight fire TOPs. Such fight fire TOPs might specify a break-
down of fighting a fire into activities such as checking for
civilians, ensuring power and gas is turned off, and spraying
water. Constraints between these roles will specify interac-
tions such as required execution ordering and whether one
role can be performed if another is not currently being per-
formed. Notice that TOPs do not specify the coordination or
communication required to execute a plan; the proxy deter-
mines the coordination that should be performed.

Current versions of Machinetta include a token-based role
allocation algorithm. The decision for the agent becomes
whether to assign values represented by tokens it currently
has to its variable or to pass the tokens on. First, the
team member can choose the minimum capability the agent
should have in order to assign the value. This minimum ca-
pability is referred to as thethreshold. The threshold is cal-
culated once (Algorithm 1, line 6), and attached to the token
as it moves around the team.

Second, the agent must check whether the value can be
assigned while respecting its local resource constraints (Al-
gorithm 1, line 9). If the value cannot be assigned within the
resource constraints of the team member, it must choose a
value(s) to reject and pass on to other teammates in the form
of a token(s) (Algorithm 1, line 12). The agent keeps values
that maximize the use of its capabilities (performed in the
MAX CAP function, Algorithm 1, line 10).

Algorithm 1 TOKENMONITOR(Cap,Resources)
1: V ← ∅
2: while truedo
3: msg ← getMsg()
4: token← msg
5: if token.threshold = NULL then
6: token.threshold← COMPUTETHRESHOLD(token)
7: if token.threshold ≤ Cap(token.value) then
8: V ← V ∪ token.value
9: if

P
v∈V Resources(v) ≥ agent.resources then

10: out← V− MAX CAP(V alues)
11: for all v ∈ out do
12: PASSON(newtoken(v))
13: V alues← V alues− out
14: else
15: PASSON(token) /* threshold > Cap(token.value) */

Proxy: Adjustable Autonomy
In this paper, we focus on a key aspect of the proxy-based
coordination: Adjustable Autonomy. Adjustable autonomy
refers to an agent’s ability to dynamically change its own
autonomy, possibly to transfer control over a decision to a
human. Previous work on adjustable autonomy could be

categorized as either involving a single person interacting
with a single agent (the agent itself may interact with oth-
ers) or a single person directly interacting with a team. In
the single-agent single-human category, the concept of flex-
ible transfer-of-control strategy has shown promise (Scerri,
Pynadath, & Tambe 2002). A transfer-of-control strategy is
a preplanned sequence of actions to transfer control over a
decision among multiple entities. For example, anAH1H2

strategy implies that an agent (A) attempts a decision and if
the agent fails in the decision then the control over the deci-
sion is passed to a humanH1, and then ifH1 cannot reach
a decision, then the control is passed toH2. Since previ-
ous work focused on single-agent single-human interaction,
strategies were individual agent strategies where only a sin-
gle agent acted at a time.

An optimal transfer-of-control strategy optimally bal-
ances the risks of not getting a high quality decision against
the risk of costs incurred due to a delay in getting that deci-
sion. Flexibility in such strategies implies that an agent dy-
namically chooses the one that is optimal, based on the situ-
ation, among multiple such strategies (H1A, AH1, AH1A,
etc.) rather than always rigidly choosing one strategy. The
notion of flexible strategies, however, has not been applied in
the context of humans interacting with agent-teams. Thus,
a key question is whether such flexible transfer of control
strategies are relevant in agent-teams, particularly in a large-
scale application such as ours.

DEFACTO aims to answer this question by implementing
transfer-of-control strategies in the context of agent teams.
One key advance in DEFACTO is that the strategies are not
limited to individual agent strategies, but also enables team-
level strategies. For example, rather than transferring control
from a human to a single agent, a team-level strategy could
transfer control from a human to an agent-team. Concretely,
each proxy is provided with all strategy options; the key is
to select the right strategy given the situation. An example
of a team level strategy would combineAT Strategy andH
Strategy in order to makeAT H Strategy. The default team
strategy,AT , keeps control over a decision with the agent
team for the entire duration of the decision. TheH strategy
always immediately transfers control to the human.AT H
strategy is the conjunction of team levelAT strategy withH
strategy. This strategy aims to significantly reduce the bur-
den on the user by allowing the decision to first pass through
all agents before finally going to the user, if the agent team
fails to reach a decision.

Experiments and Evaluation
Our DEFACTO system was evaluated through experiments
comparing the effectiveness of Adjustable Autonomy (AA)
strategies over multiple users. In order to provide DE-
FACTO with a dynamic rescue domain, we connected it to
the previously developed RoboCup Rescue simulation envi-
ronment (Kitanoet al. 1999). To interface with DEFACTO,
each fire engine is controlled by a proxy in order to han-
dle the coordination and execution of AA strategies. Con-
sequently, the proxies can try to allocate fire engines to fires
in a distributed manner, but can also transfer control to the
more expert user (incident commander). The user can then
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Figure 5: Performance.

use the Omni-Viewer in Allocation mode to allocate engines
to the fires that he has control over. In order to focus on
the AA strategies (transferring the control of task allocation)
and not have the users ability to navigate interfere with re-
sults, the Navigation mode was not used during this first set
of experiments.

The results of our experiments are shown in Figure 5,
which shows the results of subjects 1, 2, and 3. Each sub-
ject was confronted with the task of aiding fire engines in
saving a city hit by a disaster. For each subject, we tested
three strategies, specifically,H, AH andAT H; their perfor-
mance was compared with the completely autonomousAT

strategy.AH is an individual agent strategy, tested for com-
parison withAT H, where agents act individually, and pass
those tasks to a human user that they cannot immediately
perform. Each experiment was conducted with the same ini-
tial locations of fires and building damage. For each strategy
we tested, varied the number of fire engines between 4, 6 and
10. Each chart in Figure 5 shows the varying number of fire
engines on the x-axis, and the team performance in terms of
numbers of building saved on the y-axis. For instance, strat-
egyAT saves 50 building with 4 agents. Each data point on
the graph is an average of three runs. Each run itself took
15 minutes, and each user was required to participate in 27
experiments, which together with 2 hours of getting oriented
with the system, equates to about 9 hours of experiments per
volunteer.

Figure 5 enables us to conclude the following:

• Human involvement with agent teams does not neces-
sarily lead to improvement in team performance.Con-
trary to expectations and prior results, human involvement
does not uniformly improve team performance, as seen
by human-involving strategies performing worse than the
AT strategy in some cases. For instance, for subject 3
AH strategy provides higher team performance thanAT

for 4 agents, yet at 10 agents human influence is clearly
not beneficial.

• Providing more agents at a human’s command does not
necessarily improve the agent team performance.As seen
for subject 2 and subject 3, increasing agents from 4 to 6

givenAH andAT H strategies is seen to degrade perfor-
mance. In contrast, for theAT strategy, the performance
of the fully autonomous agent team continues to improve
with additions of agents, thus indicating that the reduction
in AH andAT H performance is due to human involve-
ment. As the number of agents increase to 10, the agent
team does recover.

• No strategy dominates through all the experiments given
varying numbers of agents.For instance, at 4 agents,
human-involving strategies dominate theAT strategy.
However, at 10 agents, theAT strategy outperforms all
possible strategies for subjects 1 and 3.

• Complex team-level strategies are helpful in practice:
AT H leads to improvement overH with 4 agents for
all subjects, although surprising domination ofAH over
AT H in some cases indicates thatAH may also need a
useful strategy to have available in a team setting.

Note that the phenomena described range over multiple
users, multiple runs, and multiple strategies. The most im-
portant conclusion from these figures is thatflexibility is nec-
essary to allow for the optimal AA strategy to be applied.
The key question, then, is then how to select the appropriate
strategy for a team involving a human whose expected de-
cision quality isEQH . In fact, by estimating theEQH of
a subject by checking the “H” strategy for small number of
agents (say 4), and comparing toAT strategy, we may begin
to select the appropriate strategy for teams involving more
agents. In general, higherEQH lets us still choose strate-
gies involving humans for a more numerous team. For large
teams however, the number of agentsAGH effectively con-
trolled by the human does not grow linearly, and thusAT

strategy becomes dominant.
Unfortunately, the strategies including the humans and

agents (AH andAT H) for 6 agents show a noticeable de-
crease in performance for subjects 2 and 3 (see Figure 5). It
would be useful to understand which factors contributed to
this phenomena.

Our crucial predictions were that while numbers of agents
increase,AGH steadily increases andEQH remains con-
stant. Thus, the dip at 6 agents is essentially affected by
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Figure 7: Amount of agents assigned per fire.

Strategy H AH AT H

# of agents 4 6 10 4 6 10 4 6 10

Subject 1 91 92 154 118 128 132 104 83 64

Subject 2 138 129 180 146 144 72 109 120 38

Subject 3 117 132 152 133 136 97 116 58 57

Table 1: Total amount of allocations given.
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Figure 6: Agents effectively used (AGH ) by the subjects (a)
and Performance of strategyH. (b)

eitherAGH or EQH . We first testedAGH in our domain.
The amount of effective agents,AGH , is calculated by di-
viding how many total allocations each subject made by how
many theAT strategy made per agent, assumingAT strategy
effectively uses all agents. Figure 6-(a) shows the number
of agents on the x-axis and the number of agents effective
used,AGH , on the y-axis; theAT strategy, which is using
all available agents, is also shown as a reference. However,
the amount of effective agents is actually about the same in
4 and 6 agents. This would not account for the sharp drop
we see in the performance. We then shifted our attention
to theEQH of each subject. One reduction inEQH could
be because subjects simply did not send as many allocations
totally over the course of the experiments. This, however is
not the case as can be seen in Table 1 where for 6 agents, as
the total amount of allocations given is comparable to that
of 4 agents. To investigate further, we checked if the qual-
ity of human allocation had degraded. For our domain, the
more fire engines that fight the same fire, the more likely it

is to be extinguished and in less time. For this reason, the
amount of agents that were tasked to each fire is a good in-
dicator of the quality of allocations that the subject makes
6-(b). Figure 7 shows the number agents on the x-axis and
the average amount of fire engines allocated to each fire on
the y-axis.AH andAT H for 6 agents result in significantly
less average fire engines per task (fire) and therefore lower
averageEQH .

Related Work
We have discussed related work throughout this paper. How-
ever, we now provide comparisons with key previous agent
software prototypes and research. Hill et al’s work is a simi-
lar immersive training tool (Swartoutet al. 2001). However,
their work focused more on multi-modal dialogue and em-
phasize single agent interaction along predefined story lines,
whereas our work focuses on adjustable autonomy and co-
ordinating large numbers of agents in a dynamic, complex
fire-fighting domain.

Among the current tools aimed at simulating rescue en-
vironments, it is important to mention products like JCATS
(Technology 2005) and EPICS (Laboratory 2005). JCATS
represents a self-contained, high-resolution joint simulation
in use for entity-level training in open, urban and subter-
ranean environments. Developed by Lawrence Livermore
National Laboratory, JCATS gives users the capability to de-
tail the replication of small group and individual activities
during a simulated operation. At this point however, JCATS
cannot simulate agents. Finally, EPICS is a computer-based,
scenario-driven, high-resolution simulation. It is used by
emergency response agencies to train for emergency situ-
ations that require multi-echelon and/or inter-agency com-
munication and coordination. Developed by the U.S. Army
Training and Doctrine Command Analysis Center, EPICS
is also used for exercising communications and command
and control procedures at multiple levels. Similar to JCATS
however, EPICS does not currently allow agents to partici-
pate in the simulation.

Given our application domains, Scerri et al’s work on
robot-agent-person (RAP) teams for disaster rescue (Scerri
et al. 2003) is closely related to DEFACTO. Our work takes
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a significant step forward in comparison. First, the omni-
viewer enables navigational capabilities improving human
situational awareness not present in previous work. Second,
we provide team-level strategies, which we experimentally
verify, absent in that work. Third, we provide extensive ex-
perimentation, and illustrate that some of the conclusions
reached in (Scerriet al. 2003) were indeed preliminary,
e.g., they conclude that human involvement is always ben-
eficial to agent team performance, while our more exten-
sive results indicate that sometimes agent teams are better
off excluding humans from the loop. Human interactions in
agent teams has also been investigated in (Burstein, Mulve-
hill, & Deutsch 1999; Suya You & Fox 2003), and there is
significant research on human interactions with robot-teams
(Fong, Thorpe, & Baur 2002; Crandall, Nielsen, & Goodrich
2003). However, they do not use flexible AA strategies
and/or team-level AA strategies. Furthermore, our exper-
imental results may assist these researchers in recognizing
the potential for harm that humans may cause to agent or
robot team performance. Significant attention has been paid
in the context of adjustable autonomy and mixed-initiative
in single-agent single-human interactions (Horvitz 1999;
Allen 1995). However, this paper focuses on new phenom-
ena that arise in human interactions with agent teams.

Summary
This paper presents an operational prototype training tool
for incident commanders: DEFACTO. DEFACTO incor-
porates state of the art artificial intelligence, 3D visualiza-
tion and human-interaction reasoning into a unique high
fidelity system for training incident commanders. The
DEFACTO system achieves this via three main compo-
nents: (i)Omnipresent Viewer - intuitive interface, (ii)Proxy
Framework - for team coordination, and (iii) Flexible In-
teraction - between the incident commander and the team.
We present results preliminary experiments with DEFACTO
in the firefighting domain. These results illustrate that an
agent team must be equipped with flexible strategies for ad-
justable autonomy so that the appropriate strategy can be
selected. Positive feedback from DEFACTO’s ultimate con-
sumers, LAFD, illustrates its promise and potential for real-
world application.
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