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Abstract 
 
This report analyses electricity outages over the period January 1990-August 2004. A database was constructed 
using U.S. data from the DAWG database, which is maintained by the North American Electric Reliability Council 
(NERC). The data includes information about the date of the outage, geographical location, utilities affected, 
customers lost, duration of the outage in hours, and megawatts lost. Information found the DAWG database was also 
used to code the primary cause of the outage. Categories that included weather, equipment failure, human error, 
fires, and others were added to the database. In addition, information about the total number of customers served by 
the affected utilities, as well as total population and population density of the state affected in each incident, was 
also incorporated to the database. The resulting database included information about 400 incidents over this period.  
  
The database was used to carry out two sets of analyses. The first is a set of analyses over time using three-, six-, or 
twelve-month averages for number of incidents, average outage duration, customers lost and megawatts lost. 
Negative binomial regression models, which account for overdispersion in the data, were used.  For the number of 
incidents over time a seasonal analysis suggests there is a 9.3% annual increase in incident rate given season over 
this period. Given the year, summer is estimated to have 65-85% more incidents than the other seasons. The duration 
data suggest a more complicated trend; an analysis of duration per incident over time using a loess nonparametric 
regression “scatterplot smoother” suggests that between 1990-93 durations were getting shorter on average but this 
trend changed in the mid-1990s when average duration started to increase, and this increase became more 
pronounced after 2002. When looking at average customer losses by season there is weak evidence of an upward 
trend in the average customer loss per incident, with an estimated increase of a bit less than 10,000 customers per 
incident per year. Similar analyses of MW lost per incident over time showed no evidence of any time or seasonal 
patterns for this variable.   
 
The second part of the report includes a number of event-level analyses. The data in these analyses are modeled in 
two parts. First, the different characteristics related to whether an incident has zero or nonzero customers lost are 
determined. Then, given that the number lost in nonzero, the characteristics that help to predict the customers lost 
are analyzed. Unlike the first set of models described, in this section a number of predictors such as primary cause of 
the outage (including variables such as weather, equipment failure, system protection, human error and others), total 
number of customers served by the affected utilities, and the population density of the states where the outages were 
used in the analyses to gain a better understanding of the three key variables: customers lost, megawatts lost and 
duration of electric outages. Logistic regression was used in these analyses. For logged customers lost, the only 
predictor showing much of a relationship was logged MW lost. The total number of customers served by the utility 
was found to be a marginally significant predictor of customers lost per incident. Customer losses are higher for 
natural weather related events, crime, unknown causes, and third party, and lower for capacity shortage, demand 
reduction, and equipment failure, holding all else in the model fixed.  
 
The analyses for duration at the event level find that the two most common causes of outages, equipment failure and 
weather, are very different, with the former associated with shorter events and the latter associated with longer ones. 
When the primary cause of the events is included in the regression models, the time trend for the average duration 
per incident found in earlier analyses disappears. According to the data, weather related incidents are becoming 
more common in later years and equipment failures less common, and this change in the relative frequency of 
primary cause of the events accounts for much of the overall pattern of increasing average durations by season. 
Holding all else in the model constant, these analyses also suggest that winter events have an expected duration that 
is 2.25 times the duration of summer events, with autumn and spring in between. 
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Electricity Case: Statistical Analysis of Electric Power Outages 
 
This report presents the detailed results of the statistical analysis of electric power outage data 
summarized in the Electricity Case – Main Report. It contributes to the sections on the evaluation 
of risks and consequences of electric power outages. 
 
 
I. Summary analyses over time 

 
A. Analysis of the number of incidents over time 
 
This report summarizes the analyses of incident counts over time. Such count data are typically 
analyzed using special count regression models based on the Poisson and negative binomial 
distributions; see Simonoff (2003, chapter 5), for extensive discussion of these models. The 
standard count regression model is based on the Poisson distribution. The Poisson distribution 
has the property that its mean equals its variance, which can account for the observed pattern in 
count data that variability increases with level. 
 
Count regression models are generally fit as loglinear models; that is, it is the logarithm of the 
mean that is modeled as a linear function of predictors, or equivalently, the mean is modeled as 
an exponential function of the predictors. This implies, for example, a proportional relationship 
with a variable, rather than an additive one. Loglinear models are natural for count data because 
the true mean of the response cannot possibly be negative; a linear model on predictors can lead 
to estimated negative means, but a loglinear model cannot. 
 
Annual data 
 
We start with data measured at the annual level. The following is a plot of the annual incident 
figures for the U.S. data, along with the estimate of the time trend based on a Poisson regression 
model. Note that the estimated time trend is based only on years 1990 through 2003, since the 
2004 data are incomplete (the data only run through August). 
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There are several noteworthy points here: 

1. The fitted curve is consistent with an estimated annual increase in incidents of 8.2%. 
Note, by the way, that it is apparent from the plot that a loglinear model is more 
reasonable than a linear model here, as the increase in incidents is slower in the 1990s 
than in the 2000s. 

2. The estimated increase is highly significantly different from zero, with a Wald statistic 
(the analogue of a t-statistic for Poisson regression models) of 5.8. 
 
Here is output from the model detailing the significance testing based on the Poisson 
model: 
 
Coefficients: 
                   Value Std. Error      Wald  
(Intercept) -153.6724123 27.2931301 -5.630443 
       Date    0.0785583  0.0136619  5.750174 
 
The significance of the time trend can be assessed by calculating a tail probability for the 
5.75 based on a normal distribution; in this case it is zero to 8 digits. The estimated 
annual increase in incidents comes from exponentiating the slope coefficient in this 
model, as exp(.0786) = 1.082, implying an estimated 8.2% annual increase.  

3. The year 1998 was obviously a very unusual one, with a very small number of incidents 
(5, where the model implies an estimate of 26.0). 
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4. There is evidence that the incident rate is increasing in recent years. The model implies 
an estimated 39.6 incidents in 2003, when there were, in fact, 57 (this is roughly 2 ¾ 
standard deviations above the expected number), and an estimated 42.9 in 2004, when 
there were 50 in only the first 8 months of the year. The 2003 number is apparently not 
because of the August 14, 2003 blackout, since that event only accounts for 8 incidents. 

 
There is a flaw in this analysis, in that the Poisson regression model does not fit the data well, 
because of overdispersion. Overdispersion occurs when there is unmodeled heterogeneity in the 
data. The Poisson model treats each year as identical, other than the actual difference in year. 
This is unlikely to be true, as the chances are very good that there have been many changes to the 
structure of power generation over the years (new power plants come on line, old ones go off, 
new drains on power generation occur, political situations change, and so on). The Poisson 
model does not account for this possibility, and as a result the observed variability in the 
response is larger than that implied by the Poisson model (recall that the Poisson distribution has 
the property that the mean equals the variance). An important result of overdispersion is that the 
statistical significance of effects in the model are overstated. 

 
Overdispersion has occurred here, as both the Pearson (X2=34.1) and deviance (G2=42.0, both on 
12 degrees of freedom) goodness-of-fit statistics indicate that the Poisson model does not fit the 
data. 

 
A way of addressing overdispersion is to fit a count regression model that allows for the variance 
being larger than the mean. The standard model of this type is the negative binomial regression 
model.  Here is output for this model: 

 
Coefficients: 
                    Value  Std. Error      Wald  
(Intercept) -135.76307835 47.91257415 -2.833558 
       Date    0.06959082  0.02399384  2.900362 
 

 
The Wald statistic for this model is smaller than in the Poisson model, but it is still highly 
significant (p=.002). The model fits the data well, as the deviance equals 15.3 on 12 degrees of 
freedom (p=.23, not rejecting the fit of the model). The estimated annual increase in incidents 
based on this model is slightly lower than before, implying a 7.2% annual increase in incidents. 
Here is a graphical representation of the estimated trend: 
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Semiannual data 
 
One potential problem with the analysis on annual data is that there are only 14 data points. 
The following analysis is based on semiannual incident counts, resulting in roughly twice as 
many data points. Once again the last data point (corresponding to the second half of 2004) 
has been omitted, since it is incomplete. 
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This analysis reinforces and refines some of the earlier impressions. 
1. The implications regarding the increase in incidents are similar for these semiannual data 

to those for the annual data. The estimated rate of increase is 9.5% annually, similar to 
what was seen before. 

2. The estimated increase is even more significantly different from zero, with a Wald 
statistic of 7.1. Here is output for the model: 

 
Coefficients: 
                    Value  Std. Error      Wald  
(Intercept) -178.12611859 25.49168622 -6.987616 
       Date    0.09045251  0.01275513  7.091459 
 

3. We can see from the plot that it was the second half of 1998 that was so unusual, with 
only 1 incident (and 14.1 predicted by the model). 

4. The first part of 2003 actually had fewer incidents than expected; it was the 46 incidents 
in the second half of 2003 (more than twice the expected number) that was so unusual. 
Again, only eight of these were from the August 14 blackout. The first half of 2004 was a 
bit above normal, but not overwhelmingly so, but the 18 incidents in the first two months 
of the second half of 2004 is noticeably high. Thus, in addition to the relatively stable 
annual increase in incidents, there is still (limited) evidence of an increasing rate recently. 

5. There is evidence of overdispersion in these data as well, as the Pearson (X2=87.2) and 
deviance (G2=92.4, both on 27 degrees of freedom) indicate lack of fit. A negative 
binomial fit to these data is as follows: 
 

DRAFT



5 

Coefficients: 
                    Value  Std. Error      Wald 
(Intercept) -154.57911519 44.34697394 -3.485674 
       Date    0.07866603  0.02220172  3.543240 
 
The time trend is highly statistically significant (p=.0004). The model fits the data well 
(the deviance is 30.4 on 27 degrees of freedom, p=.29), and it implies an estimated 8.2% 
annual increase in incidents. Here is a plot: 
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Seasonal data 
 
Examining the data at a seasonal level allows for the inclusion of different levels for different 
seasons. Winter is defined as December through February, spring as March through May, 
summer as June through August, and autumn as September through November. In this plot, the 
winter points and line are in blue, the spring points and line are in green, the summer points and 
line are in red, and the autumn points and line are in orange. Note that all of the data points other 
than the first one are used, since the data go through August 2004 (that is, summer 2004), but the 
first data point only includes two months instead of three. 
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1. Taking the season into account, the estimated annual increase in incident rate is 10.1%. 
All of the estimates obtained thus far are within the estimated standard errors of each 
other, so from a statistical point of view, all are equally reasonable. That is, what is most 
reasonable is to say is that the estimated increase in incidents is roughly 7-10% annually. 

2. This increase is highly statistically significantly different from zero (Wald statistic 7.7). 
Here is output; the tests for the seasons take Autumn as a baseline category. 

 
Coefficients: 
                     Value  Std. Error       Wald  
 (Intercept) -191.08893534 25.12676351 -7.6049960 
        Date    0.09647909  0.01257097  7.6747538 
SeasonSpring    0.09125890  0.15677009  0.5821193 
SeasonSummer    0.57571503  0.14186204  4.0582740 
SeasonWinter    0.06511136  0.15980717  0.4074371 
 

3. While the winter, spring, and autumn estimated rates are similar to each other (with 
autumn having a rate that is slightly lower), summer has a noticeably higher rate of 
incidents. This is presumably from weather effects: snow and ice in the winter, 
thunderstorms in parts of the US in spring, and most importantly thunderstorms and 
intense heat (with corresponding air conditioner use) in the summer (and the lack of all of 
these factors in the autumn; we might have expected evidence of a hurricane effect in 
autumn, but only Hurricane Floyd in 1999 and Hurricane Isabel in 2003 show up as 
noteworthy). The difference between the summer rate and that of the other seasons is 
highly statistically significant, but more importantly, corresponds to an important effect 
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in practical terms, since the estimated number of incidents is 60% to 80% higher in 
summer than in the other seasons, given the year. 

4. The unusually high rates of the last two years noted earlier come from the summers of 
2003 and 2004, which have incident counts that are unusually high. Note, however, that 
once season is taken into account, these observations are no longer alarmingly high, only 
being between 1 ½ and 2 standard deviations above the expected value.  

5. There is evidence of overdispersion here, as the Pearson (X2=127.1) and deviance 
(G2=132.8, both on 53 degrees of freedom) tests indicate lack of fit. A negative binomial 
fit to these data is as follows: 
 
Coefficients: 
                     Value  Std. Error      Wald  
 (Intercept) -176.83433714 38.06541369 -4.645538 
        Date    0.08933316  0.01905175  4.688973 
SeasonSpring    0.13104417  0.23103941  0.567194 
SeasonSummer    0.62354889  0.22063885  2.826107 
SeasonWinter    0.06813003  0.23598164  0.288709 
 
The model fits the data adequately, but not as well as the earlier negative binomial 
models fit (the deviance is 68.4 on 53 degrees of freedom, p=.08). The model implies an 
estimated 9.3% annual increase in incidents given season, and an estimated 65-85% 
higher rate for summer than for the other seasons given year. Here is a plot summarizing 
the model; it is clearly broadly similar to the one based on the Poisson model: 
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B. Analysis of the number of incidents that were associated with nonzero MW loss or 
nonzero customer loss over time 
 
The earlier analyses included incidents where there was no effect on the customer base, either in 
terms of customers affected or power loss. It could be argued that it is incidents that affect 
customers that are most interesting, so this portion of the report focuses on those incidents. 
Overdispersion occurs in all of the models, so all analyses are based on the negative binomial 
model. 
 
1. INCIDENTS WITH NONZERO MW LOST 
 
Annual data 
 
Here is a plot with the negative binomial fit superimposed. 
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Here is output for this model: 

 
Coefficients: 
                   Value  Std. Error      Wald  
(Intercept) -113.5721447 57.91502205 -1.961014 
       Date    0.0582949  0.02900386  2.009901 
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The strength of the time trend is weaker than for the complete data, having a tail probability of 
.044. The estimated annual increase in incidents with nonzero MW is exp(.058295)-1=6.0%, so 
apparently the incidents with zero MW lost inflated the rate slightly (since this rate, with those 
incidents omitted, is smaller than the rate estimated based on all incidents). Note that 1998 is still 
unusually low, and 2003 and 2004 are unusually high. 
 
 
Semiannual data 
 
Here is a plot with the fitted model on the semiannual data. 
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Here is output for the model: 
 
Coefficients: 
                    Value  Std. Error      Wald  
(Intercept) -151.48640808 54.82831060 -2.762923 
       Date    0.07694855  0.02744971  2.803256 
 
The estimated annual increase in incidents with nonzero MW loss is 8.0%, and is highly 
significant (p=.005). Note that while the second half of 2003 and of 2004 (only two months) are 
still high, now the first half of 2003 is also very high (this is because all of the incidents in the 
first half of 2003 were nonzero MW loss incidents).  
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Seasonal data 
 
Here is a plot by season. 
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The fit to these data is as follows: 
 
Coefficients: 
                     Value  Std. Error      Wald  
 (Intercept) -183.80666893 47.40955640 -3.876996 
        Date    0.09257176  0.02372817  3.901344 
SeasonSpring    0.32906080  0.29114767  1.130220 
SeasonSummer    0.83965494  0.27956975  3.003383 
SeasonWinter    0.23304525  0.29788955  0.782321 
 
The model implies an estimated 9.7% annual increase in incident rate given season, which is 
highly statistically significant (p<.0001), and an estimated 65-130% higher rate for summer than 
for the other seasons. The summer effect is stronger than before, which is easy to understand: 
while more than 90% of the summer incidents had nonzero MW loss, roughly ¼ of the incidents 
in the autumn had zero MW loss. That is, nonzero MW incidents are more likely in the summer, 
thereby strengthening the “summer effect” here. In terms of the time trend, we see a similar 
pattern to before, of a 6-10% annual increase in incidents from the analyses based on the three 
different time aggregations. 
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2. INCIDENTS WITH NONZERO CUSTOMERS LOST 
 
 
Annual data 
 
Here is a plot with the negative binomial fit superimposed. 
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Here is output for this model: 

 
Coefficients: 
                    Value  Std. Error      Wald  
(Intercept) -191.83850183 69.27401101 -2.769271 
       Date    0.09745008  0.03469084  2.809101 
 
The strength of the time trend is stronger than for the analysis based only on nonzero MW 
incidents, having a tail probability of .005. The estimated annual increase in incidents with 
nonzero customer loss is exp(.09745)-1=10.2%, so apparently the incidents with zero customers 
lost deflated the rate earlier (the rate is higher once the zero customer loss events are omitted). 
This makes sense: the rate of incidents that had no customer loss was more than 35% from 1990-
1997, but has been only 7.5% since then. Note that 1998 is not unusually low now, but 2003 and 
2004 are still unusually high. 
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Semiannual data 
 
Here is a plot with the fitted model on the semiannual data. 
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Here is output for the model: 
 
Coefficients: 
                   Value  Std. Error      Wald  
(Intercept) -219.3758662 59.57344642 -3.682444 
       Date    0.1108936  0.02982306  3.718385 
 
The estimated annual increase in incidents with nonzero MW loss is 11.7%, and is highly 
statistically significant (p=.0002). The second half of 2003 and first half of 2004 are unusually 
high.  
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Seasonal data 
 
Here is a plot of the seasonal data. 
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The fit to these data is as follows: 
 
Coefficients: 
                    Value  Std. Error       Wald  
 (Intercept) -257.7296583 50.12320622 -5.1419228 
        Date    0.1295428  0.02508268  5.1646296 
SeasonSpring    0.2660959  0.30367008  0.8762666 
SeasonSummer    0.8417521  0.28977870  2.9048102 
SeasonWinter    0.1965276  0.30967757  0.6346199 
 
The model implies an estimated 13.8% annual increase in incident rate (p zero to six digits), and 
an estimated 75-135% higher rate for summer than for the other seasons. The summer effect is 
similar to that for the nonzero MW loss data, but the pattern is a little more complicated: both 
summer and winter have lower rates of incidents with zero customer loss compared to spring and 
autumn, so the estimated relative chances of incidents in those seasons compared to spring and 
autumn are now higher. Overall, while removing the zero MW loss incidents has relatively little 
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effect on the estimated annual increase in incident rate, removing the zero customer loss 
incidents has a stronger effect on the estimated annual increase of rates, increasing it to 12-14%.  
 
 
C. Analysis of duration over time 
 
We now discuss the pattern of average duration of incidents over time. The response variable, 
whether measured annually, semiannually, or seasonally, is the average duration per incident 
over that time period. Note that zero-loss events are included, since they seem to be directly 
relevant to an analysis of duration. Obviously, events with missing duration are not included, 
which raises the issue of nonresponse bias. If the incidents for which duration is missing are 
different from those in which it was reported, that can bias the results in ways that are impossible 
to ascertain. 
 
 
Annual data 
 
We start with analyses based on a linear model for durations. Here is a plot of the average 
duration versus time, with two lines superimposed. 
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It is apparent that there is little evidence of any time trend in average duration. There is one early 
outlier, corresponding to 1991, although it is not that different from the values for 2003 and 
2004. The solid line is the fitted time trend of average duration based on all of the data other than 

DRAFT



15 

2004 (since those data were incomplete), which has a negative slope that is far from statistically 
significant: 
 
Coefficients: 
                 Value Std. Error    t value   Pr(>|t|)  
(Intercept)  1521.9638  3165.4638     0.4808     0.6393 
       Date    -0.7476     1.5855    -0.4715     0.6457 
 
Residual standard error: 23.91 on 12 degrees of freedom 
Multiple R-Squared: 0.01819 
 
The dashed line in the plot gives the estimated time trend omitting 1991. The slope has shifted to 
be positive, but there is still no evidence of any trend: 
 
Coefficients: 
                 Value Std. Error    t value   Pr(>|t|)  
(Intercept) -1039.5609  2933.9925    -0.3543     0.7298 
       Date     0.5335     1.4693     0.3631     0.7234 
 
Residual standard error: 20.51 on 11 degrees of freedom 
Multiple R-Squared: 0.01185 
 
It is possible that multiplicative growth or decay of average duration might be sensible, which 
would imply the use of a model where logged duration is the response variable. In fact, the 
results are effectively the same: 
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Full data set 
 
Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
(Intercept)   77.8956  165.8329     0.4697    0.6470 
       Date   -0.0376    0.0831    -0.4522    0.6592 
 
Residual standard error: 1.253 on 12 degrees of freedom 
Multiple R-Squared: 0.01675 
 
Data set omitting 1991 
 
Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
(Intercept)    4.3909  177.7861     0.0247    0.9807 
       Date   -0.0008    0.0890    -0.0089    0.9930 
 
Residual standard error: 1.243 on 11 degrees of freedom 
Multiple R-Squared: 7.267e-006 
 
 
Semiannual data 
 
Here is a plot of the semiannual data, with linear trend lines superimposed. 
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The results are similar to those for the annual data. The estimated time trend is slightly positive 
when the 1991 time period is included, and slightly negative when it is not included, but in 
neither case is it close to statistical significance. Note that the value for the second half of 2004 is 
not included in either model, since the data are incomplete for that time period. 
 
Here is computer output for the two models: 
 
Full data set 
 
Coefficients: 
                 Value Std. Error    t value   Pr(>|t|)  
(Intercept)  -857.6518  2569.1990    -0.3338     0.7412 
       Date     0.4445     1.2865     0.3455     0.7325 
 
Residual standard error: 28.95 on 26 degrees of freedom 
Multiple R-Squared: 0.004569 
 
 
 
 
 
Data set omitting first half of 1991 
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Coefficients: 
                 Value Std. Error    t value   Pr(>|t|)  
(Intercept) -2933.8052  2246.1745    -1.3061     0.2034 
       Date     1.4825     1.1247     1.3182     0.1994 
 
Residual standard error: 24.37 on 25 degrees of freedom 
Multiple R-Squared: 0.06499 
 
Models for logged duration also find no evidence of any effect: 
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Full data set 
 
Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
(Intercept)  -47.1819  122.4689    -0.3853    0.7032 
       Date    0.0250    0.0613     0.4077    0.6869 
 
Residual standard error: 1.38 on 26 degrees of freedom 
Multiple R-Squared: 0.006351 
 
 
 
Data set omitting first half of 1991 
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Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
(Intercept) -101.6895  123.2912    -0.8248    0.4173 
       Date    0.0523    0.0617     0.8465    0.4053 
 
Residual standard error: 1.338 on 25 degrees of freedom 
Multiple R-Squared: 0.02786 
 
 
Seasonal data 
 
Here is a plot based on all of the data other than the first data point, fitting a linear time trend. 
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There is a slight upward slope, but it is not statistically significant. There is also no evidence of a 
season effect; the spring line is marginally higher than the other lines, but this is not close to 
significance. 
 
 
 
 
 
Coefficients: 
                 Value Std. Error    t value   Pr(>|t|)  
(Intercept) -1924.2276  2748.3347    -0.7001     0.4874 
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       Date     0.9798     1.3759     0.7121     0.4800 
    Season1     9.9299     8.6390     1.1494     0.2563 
    Season2     2.4131     4.7839     0.5044     0.6164 
    Season3     1.2941     3.5458     0.3650     0.7168 
 
Residual standard error: 42.88 on 46 degrees of freedom 
Multiple R-Squared: 0.04353  
F-statistic: 0.5233 on 4 and 46 degrees of freedom, the p-value i 
s 0.719 
 
 
Anova Table  
 
Response: Duration 
              Sum Sq Df   F value    Pr(>F)  
(Intercept)   901.21  1 0.4902004 0.4873640 
       Date   932.31  1 0.5071208 0.4799843 
     Season  2921.74  3 0.5297475 0.6641179 
  Residuals 84568.48 46    
 
The summer 1993 point is unusual, so here is a summary omitting that data point. 
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There is now (very) weak evidence of an upward slope, but no season effect. This is presumably 
coming from the last six seasons, wherein four had average durations of more than 60 hours. 
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Coefficients: 
                 Value Std. Error    t value   Pr(>|t|)  
(Intercept) -3338.4889  2295.7900    -1.4542     0.1528 
       Date     1.6863     1.1493     1.4672     0.1493 
    Season1    10.0033     7.1542     1.3982     0.1689 
    Season2    -1.7791     4.0609    -0.4381     0.6634 
    Season3     2.2743     2.9438     0.7726     0.4438 
 
Residual standard error: 35.51 on 45 degrees of freedom 
Multiple R-Squared: 0.09675  
F-statistic: 1.205 on 4 and 45 degrees of freedom, the p-value is 
 0.3218 
 
 
Anova Table  
 
Response: Duration 
              Sum Sq Df  F value    Pr(>F)  
(Intercept)  2666.13  1 2.114636 0.1528365 
       Date  2714.16  1 2.152735 0.1492709 
     Season  3466.54  3 0.916493 0.4405690 
  Residuals 56735.87 45 
 
The increasing trend in the last few data points suggests that a model for logged duration based 
on seasonal data might be appropriate, since in such a model while the proportional increase in 
duration is constant over time, the absolute level increases more quickly as time goes on 
(assuming that the slope is positive).  
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The time trend is statistically significant, but there is no season effect. For this reason, the solid 
black line (the estimated time trend not including a season effect) is added to the plot. 
 
Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
(Intercept) -240.7477  108.7498    -2.2138    0.0318 
       Date    0.1217    0.0544     2.2360    0.0302 
    Season1    0.3244    0.3418     0.9490    0.3476 
    Season2    0.2108    0.1893     1.1134    0.2713 
    Season3    0.0727    0.1403     0.5178    0.6071 
 
Residual standard error: 1.697 on 46 degrees of freedom 
Multiple R-Squared: 0.1365  
F-statistic: 1.818 on 4 and 46 degrees of freedom, the p-value 
is 
 0.1416 
 
 
 
 
 
 
 
Anova Table 
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Response: log(Duration) 
              Sum Sq Df  F value    Pr(>F)  
(Intercept)  14.1070  1 4.900800 0.0318417 
       Date  14.3918  1 4.999730 0.0302440 
     Season   6.3232  3 0.732224 0.5381081 
  Residuals 132.4118 46   
 
Omitting season effect 
 
Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
(Intercept) -242.3461  107.7683    -2.2488    0.0291 
       Date    0.1226    0.0540     2.2714    0.0275 
 
Residual standard error: 1.683 on 49 degrees of freedom 
Multiple R-Squared: 0.09526 
 
This corresponds to an estimated annual increase in duration of 13.0% (exp(.1226)=1.1304). The 
summer of 1993 is unusual, so here is the analysis with that point omitted: 
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Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
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(Intercept) -267.0844  106.7902    -2.5010    0.0161 
       Date    0.1349    0.0535     2.5232    0.0152 
    Season1    0.3258    0.3328     0.9789    0.3328 
    Season2    0.1327    0.1889     0.7025    0.4860 
    Season3    0.0909    0.1369     0.6639    0.5102 
 
Residual standard error: 1.652 on 45 degrees of freedom 
Multiple R-Squared: 0.1549  
F-statistic: 2.062 on 4 and 45 degrees of freedom, the p-value 
is 
 0.1016 
 
Anova Table  
 
Response: log(Duration) 
              Sum Sq Df  F value    Pr(>F)  
(Intercept)  17.0639  1 6.255098 0.0160914 
       Date  17.3681  1 6.366600 0.0152306 
     Season   4.7354  3 0.578614 0.6320780 
  Residuals 122.7598 45 
 
Omitting season effect 
 
Coefficients: 
                Value Std. Error   t value  Pr(>|t|)  
(Intercept) -269.7994  105.2309    -2.5639    0.0135 
       Date    0.1363    0.0527     2.5866    0.0128 
 
Residual standard error: 1.63 on 48 degrees of freedom 
Multiple R-Squared: 0.1223 
 
This model implies an estimated annual increase in duration of 14.6%. We also can note that the 
observed average durations in the last 7 seasons (winter 2003 through summer 2004) are all 
higher than what is implied by the model. That is, what the multiplicative model is picking up, 
which the linear model cannot pick up, is an increase in durations in the last few years. This is 
supported when noting that the average duration up through autumn 2002 was 27.2 hours, while 
the average duration after that was 65.5 hours. Further, the corresponding medians are 3.6 hours 
and 25.8 hours.  
 
A more precise representation of this pattern comes from the following plot, which is a loess 
nonparametric curve for the durations. This is a nonparametric regression “scatterplot smoother,” 
which puts a smooth curve through the points, thereby avoiding the linear or loglinear 
assumptions made in the parametric statistical models. Details on nonparametric regression can 
be found in Simonoff (1996, chapter 5).  
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The loess curve implies that average durations dropped in the first few years of the 1990s. After 
a period of relatively flat durations, the average duration first started to increase in the mid 
1990s, and then increased more rapidly after 2002. 
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It is possible to get estimates of the local annual rates of change of duration from this curve. 
These estimates have subtle statistical properties, so they should only be considered guidelines, 
but they do give a feel for what is going on. Here are the estimated annual changes in duration: 
 
 1991 -0.46325898 
 1992 -0.32701169 
 1993 -0.16128099 
 1994  0.09265965 
 1995  0.39943522 
 1996  0.68879830 
 1997  0.34206888 
 1998  0.22424034 
 1999  0.17072734 
 2000  0.07342993 
 2001  0.19359276 
 2002  0.30423857 
 2003  0.51101651 
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Up until 1993, durations were getting shorter on average (an estimated 46% shorter from 1991 to 
1992, 33% shorter from 1992 to 1993, and so on). This changed in 1995, and for a few years the 
average duration went up 35-70% annually (note that this was at a time when durations were 
lower, so the absolute increase wasn’t that large). This was followed by a period (1998-2001) of 
fairly stable growth of 10-20% annually. Finally, from 2002 on, average durations have started 
increasing again at a high 30-50% rate. Thus, the constant estimate of 14.6% annually obtained 
from the regression model actually seems to mask some very different periods in average 
duration change. 
 
 
D. Analysis of MW loss over time 
 
We now examine average MW loss over time. 
 
Annual data 
 
Here is a plot of the average MW losses versus time, with two lines superimposed. 
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It is apparent that there is little evidence of any time trend in average MW loss. There is one very 
obvious outlier, corresponding to 2003. This comes from the August 14, 2003 blackout; four of 
the seven incidents associated with that blackout had large MW loss values, ranging from 7000 
to 23000 MW. The solid line is the fitted time trend of average MW loss based on all of the data 
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other than 2004 (since those data were incomplete); while it has a positive slope, it is far from 
statistically significant: 
 
Coefficients: 
                  Value  Std. Error     t value    Pr(>|t|)  
(Intercept) -45865.1122  56524.0160     -0.8114      0.4329 
       Date     23.2969     28.3115      0.8229      0.4266 
 
Residual standard error: 427 on 12 degrees of freedom 
Multiple R-Squared: 0.05341 
 
The dashed line in the plot gives the estimated time trend omitting 2003. The slope has shifted to 
be negative, but there is still no evidence of any real trend: 
 
Coefficients: 
                  Value  Std. Error     t value    Pr(>|t|)  
(Intercept)  36925.3025  35110.5655      1.0517      0.3155 
       Date    -18.2229     17.5904     -1.0360      0.3225 
 
Residual standard error: 237.3 on 11 degrees of freedom 
Multiple R-Squared: 0.08889 
 
 
Semiannual data 
 
Here is a plot of the semiannual data, with trend lines superimposed. 
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The results are similar to those for the annual data. The estimated time trend is slightly positive 
when the August 2003 blackout time period is included, and slightly negative when it is not 
included, but in neither case is it close to statistical significance. Note that the unusually high 
value for the second half of 2004 is not included in either model, since the data are incomplete 
for that time period. 
 
Here is computer output for the two models: 
 
Full data set 
 
Coefficients: 
                  Value  Std. Error     t value    Pr(>|t|)  
(Intercept) -13163.5432  37887.7200     -0.3474      0.7310 
       Date      6.8844     18.9723      0.3629      0.7195 
 
Residual standard error: 427.4 on 27 degrees of freedom 
Multiple R-Squared: 0.004853 
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Data set omitting second half of 2003 
 
Coefficients: 
                  Value  Std. Error     t value    Pr(>|t|)  
(Intercept)  31910.7556  26878.7923      1.1872      0.2459 
       Date    -15.7170     13.4611     -1.1676      0.2536 
 
Residual standard error: 289.9 on 26 degrees of freedom 
Multiple R-Squared: 0.04982 
 
 
Seasonal data 
 
Here is a plot based on all of the data (other than the first data point, which was not based on a 
full three months of a season). 
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There is a slight upward slope, but it is not statistically significant. There is also no evidence of a 
season effect; the summer line is marginally significantly higher than the autumn line, but this 
difference is not close to significance if all of the pairwise comparisons between seasons that can 
be made are taken into account. 
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Coefficients: 
                   Value  Std. Error     t value    Pr(>|t|)  
 (Intercept) -38753.1741  35931.9860     -1.0785      0.2859 
        Date     19.5735     17.9923      1.0879      0.2818 
SeasonSpring     94.4690    214.6689      0.4401      0.6617 
SeasonSummer    463.6138    218.1893      2.1248      0.0385 
SeasonWinter    227.6008    218.3162      1.0425      0.3021 
 
Residual standard error: 566.4 on 51 degrees of freedom 
Multiple R-Squared: 0.1122  
F-statistic: 1.612 on 4 and 51 degrees of freedom, the p-value is 
 0.1855 
 
 
Anova Table  
 
Response: MW 
              Sum Sq Df  F value    Pr(>F)  
(Intercept)   373211  1 1.163194 0.2858788 
       Date   379723  1 1.183491 0.2817609 
     Season  1670190  3 1.735172 0.1714707 
  Residuals 16363347 51   
 
The summer 2003 point is highly unusual, so a summary omitting that data point follows. 
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There is even less evidence of any effect, as summer is no different from winter, and the slope is 
virtually flat. 
 
Coefficients: 
                   Value  Std. Error     t value    Pr(>|t|)  
 (Intercept)   -605.6489  26420.4151     -0.0229      0.9818 
        Date      0.4717     13.2295      0.0357      0.9717 
SeasonSpring     98.1424    154.4194      0.6356      0.5280 
SeasonSummer    251.4646    159.8761      1.5729      0.1221 
SeasonWinter    236.0497    157.0468      1.5031      0.1391 
 
Residual standard error: 407.5 on 50 degrees of freedom 
Multiple R-Squared: 0.06423  
F-statistic: 0.858 on 4 and 50 degrees of freedom, the p-value is 
 0.4956 
 
 
Anova Table  
 
Response: MW 
             Sum Sq Df  F value    Pr(>F)  
(Intercept)      87  1 0.000525 0.9818025 
       Date     211  1 0.001271 0.9717019 
     Season  569579  3 1.143589 0.3406192 
  Residuals 8301043 50 
 
Thus, there is no evidence of any time or seasonal patterns in average MW loss per incident. 
 
 
E. Analysis of customer loss over time 
 
Annual data 
 
Here is a plot of the average customer losses versus time, with two lines superimposed. 
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It is apparent that there is little evidence of any time trend in average customer loss. I’ve also 
included the trend omitting 2003, although that year doesn’t really show up as outlying with 
respect to customer loss; in any event, that only make the time trend less significant. Here is 
computer output: 
 
Full data set 
 
Coefficients: 
                     Value     Std. Error        t value  
(Intercept) -11476942.2686  12761932.1574        -0.8993 
       Date      5828.8956      6392.1393         0.9119 
 
                  Pr(>|t|)  
(Intercept)         0.3862 
       Date         0.3798 
 
Residual standard error: 96410 on 12 degrees of freedom 
Multiple R-Squared: 0.0648 
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Data set omitting 2003 
 
Coefficients: 
                     Value     Std. Error        t value  
(Intercept)  -3715474.8515  13947861.8743        -0.2664 
       Date      1936.4846      6987.8945         0.2771 
 
                  Pr(>|t|)  
(Intercept)         0.7949 
       Date         0.7868 
 
Residual standard error: 94270 on 11 degrees of freedom 
Multiple R-Squared: 0.006933 
 
 
Semiannual data 
 
Here is a plot of the semiannual data, with a trend line superimposed. 
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The results are similar to those for the annual data, in that there is a slight positive slope, but not 
close to statistical significance. 
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Coefficients: 
                     Value     Std. Error        t value  
(Intercept)  -3718770.1426  12534458.3895        -0.2967 
       Date      1944.1571      6276.6304         0.3097 
 
                  Pr(>|t|)  
(Intercept)         0.7690 
       Date         0.7591 
 
Residual standard error: 141400 on 27 degrees of freedom 
Multiple R-Squared: 0.003541 
 
 
Seasonal data 
 
Here is a plot of the data. 
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The season lines are dashed in this picture. There is now an upward slope, and it is marginally 
statistically significant. There is no evidence of a season effect. 
 
Coefficients: 
                      Value     Std. Error        t value  
 (Intercept) -18523917.4668   8871954.6887        -2.0879 
        Date      9341.6306      4441.6147         2.1032 
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SeasonSpring    -23850.1368     53271.1703        -0.4477 
SeasonSummer     16092.9496     53264.9384         0.3021 
SeasonWinter      -554.0199     55144.9920        -0.0100 
 
                   Pr(>|t|)  
 (Intercept)         0.0418 
        Date         0.0404 
SeasonSpring         0.6563 
SeasonSummer         0.7638 
SeasonWinter         0.9920 
 
Residual standard error: 140600 on 51 degrees of freedom 
Multiple R-Squared: 0.09129  
F-statistic: 1.281 on 4 and 51 degrees of freedom, the p-value is 
 0.2897 
 
 
Anova Table  
 
Response: Customers 
                   Sum Sq Df  F value    Pr(>F)  
(Intercept)   86134360122  1 4.359403 0.0418184 
       Date   87400317840  1 4.423475 0.0404010 
     Season   12141569101  3 0.204835 0.8925836 
  Residuals 1007672863895 51    
 
These results suggest simplifying the model by removing the season factor, and this single line is 
the black line in the figure. Here is output for this model: 
 
 
Coefficients: 
                     Value     Std. Error        t value  
(Intercept) -18692704.1744   8667796.2290        -2.1566 
       Date      9425.0265      4339.3901         2.1720 
 
                  Pr(>|t|)  
(Intercept)         0.0355 
       Date         0.0343 
 
Residual standard error: 137400 on 54 degrees of freedom 
Multiple R-Squared: 0.08034 
 
 
Thus, when looking at average customer losses season by season, there is weak evidence of an 
upward trend in the average customer loss per incident, with an estimated increase of a bit less 
than 10,000 customers per incident per year. The effect is weak, accounting for only 8% in the 
variability of average customer losses. Looking at the plot, it seems that this effect is being 
driven by the lack of points in the lower right corner; that is, the lack of very low customer loss 
events in the past 5 years, compared to pre-1999. This coincides with the pattern noted in 
sections I. A and I. B when comparing the trend of the number of incidents over time to the 
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number of incidents with nonzero customer loss over time. In those analyses, it was apparent that 
the number of zero customer loss incidents has dropped significantly since 1999, which could 
account for the increase in average customer loss seen here. 
 
 
II. Event-level analyses 

 
A. Analysis of customer loss at the event level 
 
In this section customer loss is reanalyzed, but now at the event level. There are two important 
distinctions between these analyses and those of section I. E. First, the earlier analyses were 
based on average customer losses over three- six- or twelve-month time periods, and as such 
there is far lower variability in the responses than for the event-by-event customer losses. 
Second, the present analyses can account for characteristics unique to the particular event 
through regression modeling, while the earlier analyses ignored those characteristics. 
 
These data are modeled in two parts. First, we try to understand what characteristics are related 
to whether an incident has zero or nonzero customers lost. Then, given that the number lost is 
nonzero, we attempt to determine what characteristics help to predict the actual number lost. 
 
 
1. WHY DOES AN INCIDENT HAVE ZERO OR NONZERO CUSTOMERS LOST? 
 
This analysis is based on a logistic regression. In a logistic regression, the response variable is 
binary (in this case, whether or not the event had zero customer loss), and a binomial distribution 
is used to represent its random character. The probability of an event having zero customer loss, 
p, is related to predictors through the odds, p/(1-p); specifically, the logarithm of the odds is 
modeled as a linear function of the predictors. Further details on the model can be found in 
Simonoff (2003, chapter 9). 
 
Side-by-side boxplots for each predictor that separate the two groups (zero and nonzero customer 
loss) can be useful to see which variables are associated with one group or the other. Here are 
four such boxplots: 
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There is apparently little difference in the distribution of logged total customers of the utility for 
incidents with nonzero customer loss (the left box in each plot) versus for incidents with zero 
customer loss (the right box in each plot), as can be seen in the upper left plot. As might be 
expected, shorter incidents are associated with zero customer loss (upper right plot). Incidents in 
more densely populated states are more likely to have nonzero customer loss (bottom left plot). 
Finally, as noted in the earlier time trend analyses of incident rates and customer loss, there is a 
strong pattern where incidents earlier in time are more likely to have zero customer loss (bottom 
right plot).  
 
The other potential predictors are season and cause. The following table summarizes the 
marginal relationship with season: 
 
               Winter  Spring  Summer  Autumn 
Nonzero loss     62      60     111      48 
Zero loss        10      21      20      13 
 
Zero loss incidents are more common in the spring (26.3%) and autumn (21.3%), and less 
common in the summer (15.3%) and winter (13.9%). These are not, however, very strong effects. 
The following table summarizes the relationship with cause of the incident: 
 
             C Crime D  E F  H N O S T U   W  
Nonzero loss 6     2 1 63 7 10 2 3 4 2 7 173 
Zero loss    1     6 3 26 4  7 1 2 0 3 1   8 
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Weather-related incidents (W) are very likely to have nonzero customer loss. Capacity shortage 
(C), system protection (S), and unknown causes (U) are also strongly associated with nonzero 
customer loss, but this is based on far fewer incidents. Equipment failure (E) is noticeably less 
related to nonzero customer loss (while also having a large number of incidents). More atypical 
causes that are less associated with nonzero customer loss include fire (F), human error (H), 
natural disaster (N), and operational error (O), and crime, demand reduction (D), and third party 
(T) cause have zero customer loss rates more than 50% (although again, based on few incidents). 
 
Here is the output from a logistic regression modeling the probability that an incident has zero 
customer loss. 
 
Coefficients: 
                             Value    Std. Error         Wald  
        (Intercept)  -9.8993803080 7.922356e+002 -0.012495501 
Log.total.customers  -0.1049879954 8.960303e-002 -1.171701352 
       Log.duration  -0.2169415033 1.356431e-001 -1.599354795 
    Log.pop.density  -0.5184093874 2.385999e-001 -2.172713762 
    Days.since.1990  -0.0003543886 1.499079e-004 -2.364042847 
       SeasonSpring  -0.0449659583 8.266169e-001 -0.054397579 
       SeasonSummer  -0.7088575436 7.925076e-001 -0.894448900 
       SeasonWinter   0.1577912155 8.342260e-001  0.189146846 
 Primary.CauseCrime  16.2205548218 7.922350e+002  0.020474424 
     Primary.CauseD  16.0934851626 7.922353e+002  0.020314021 
     Primary.CauseE  13.6924499579 7.922338e+002  0.017283344 
     Primary.CauseF  13.6490611501 7.922345e+002  0.017228562 
     Primary.CauseH  13.5840448738 7.922342e+002  0.017146501 
     Primary.CauseN  14.1107838269 7.922354e+002  0.017811352 
     Primary.CauseO  13.8845960756 7.922351e+002  0.017525853 
     Primary.CauseS  -1.6487955012 1.186869e+003 -0.001389198 
     Primary.CauseT  17.1955933431 7.922346e+002  0.021705177 
     Primary.CauseU   0.3021950694 1.092641e+003  0.000276573 
     Primary.CauseW  12.6509256410 7.922339e+002  0.015968675 
 
This output is a little strange, in that the standard errors for the effects related to cause are much 
too high, resulting in very low Wald statistics. The problem is that the model is overspecified, 
and separation has occurred, making the logistic regression fit unstable. The model needs to be 
simplified to fix this. From the Wald statistic, and recalling the earlier boxplots, it seems clear 
that logged total customers is not helping here, so that variable has been removed from the model 
below. This also has the advantage of bringing back into the model 29 incidents for which we did 
not have total customer data. 
 
Here is the output from the simplified model: 
 
 
 
 
 
Coefficients: 
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                            Value    Std. Error        Wald  
       (Intercept)   3.2908954993 1.706303e+000  1.92866973 
      Log.duration  -0.3068145491 1.244615e-001 -2.46513591 
   Log.pop.density  -0.6073834125 1.945081e-001 -3.12266465 
   Days.since.1990  -0.0003271641 1.291495e-004 -2.53322034 
      SeasonSpring   0.1511873868 6.982464e-001  0.21652441 
      SeasonSummer  -0.6695254150 6.961581e-001 -0.96174332 
      SeasonWinter   0.2130934059 7.700996e-001  0.27670889 
Primary.CauseCrime   2.6911800897 1.684306e+000  1.59779734 
    Primary.CauseD   2.7720269862 1.708543e+000  1.62245062 
    Primary.CauseE  -0.2664512138 1.194480e+000 -0.22306882 
    Primary.CauseF  -0.1170414575 1.441739e+000 -0.08118077 
    Primary.CauseH  -0.5060062221 1.380445e+000 -0.36655308 
    Primary.CauseN   0.4467313019 1.973418e+000  0.22637437 
    Primary.CauseO  -1.1496985596 1.773590e+000 -0.64823260 
    Primary.CauseS -13.9244551234 3.204103e+002 -0.04345821 
    Primary.CauseT   3.0384818062 1.672036e+000  1.81723427 
    Primary.CauseU   0.1401502460 1.695997e+000  0.08263589 
    Primary.CauseW  -1.7355275486 1.257502e+000 -1.38013937 
 
 
Tests for terms with more than 1 degree of freedom 
 
Term           Chi-Square  DF      P 
Season             2.5385   3  0.468 
Primary.Cause     28.5179  11  0.003 
 
We see that logged duration, logged population density, a time trend (days since 1990), and 
cause are significant predictors, but season is not. The coefficients have the following 
interpretations. A 1% increase in the duration of an incident is associated with an estimated 0.3% 
decrease in the odds that an incident will have zero customer loss, holding all else in the model 
fixed. A 1% increase in the state population density is associated with an estimated 0.6% 
decrease in the odds that an incident will have zero customer loss, holding all else in the model 
fixed. Since  
exp(365 X -.0003271641)=.887, each additional year later is associated with an estimated 11.3% 
decrease in the odds that an incident has zero customer loss, holding all else in the model fixed 
(that is, the estimated annual decrease in the odds of an event having zero customer loss is 
11.3%, holding all else in the model fixed). Finally, given the other predictors, crime, demand 
reduction, and third party cause are strongly associated with zero customer loss, while 
operational error, system protection, and weather are strongly associated with nonzero loss. 
 
 
 
 
2. GIVEN THAT MORE THAN ZERO CUSTOMERS ARE LOST, WHAT FACTORS ARE RELATED TO THE 
AMOUNT LOST? 
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We now examine regression modeling for the (logged) number of customers lost, given that that 
number is nonzero. 
 
First, here are some pictures of the observed relationships, with loess curves superimposed on the 
plots. 
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The only potential predictor showing much of a relationship with logged customers lost is logged 
MW loss. There is little evident seasonal effect. There is a primary cause effect, however, with 
fire, natural disaster, weather, and especially unknown causes having generally higher customer 
losses, and capacity shortage, operational error, and system protection having smaller losses. 
Note that these boxplots have been constructed so that the width of the box is proportional to the 
square root of the sample size for that group, so the wider the box, the more information there is 
for that group. It is evident that most incidents are either weather-related, or due to equipment 
failure. 
 
A least squares regression implies that only logged MW is a significant predictor, but there is 
extreme nonconstant variance related to primary cause. 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
             Log.MW   1   67.7417 67.74171 17.05755 0.0000591 
       Log.duration   1    3.1032  3.10323  0.78140 0.3780820 
    Log.pop.density   1    0.0025  0.00249  0.00063 0.9800483 
Log.total.customers   1    5.1732  5.17319  1.30262 0.2554946 
      Primary.Cause  10   24.4770  2.44770  0.61634 0.7983204 
             Season   3    4.8571  1.61902  0.40767 0.7477002 
    Days.since.1990   1    2.4502  2.45015  0.61696 0.4333798 
          Residuals 155  615.5610  3.97136 
 
Here are side-by-side boxplots of the residuals separated by cause, which illustrates the 
nonconstant variance. Note that there is much higher variability in the residuals from the 
regression model for some causes than for others. This invalidates the inferences from the 
ordinary least squares model.  
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Weighted least squares (WLS) is used to correct for the nonconstant variance. In a WLS 
analysis, the events from causes with less variability, such as capacity shortage and fire, are 
weighted higher, while those from causes with more variability, such as equipment failure and 
system protection, are weighted lower. Here is output for the WLS model. 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
             Log.MW   1   33.4173 33.41728 32.49694 0.0000001 
       Log.duration   1    0.2267  0.22668  0.22044 0.6393648 
    Log.pop.density   1    0.0177  0.01770  0.01722 0.8957766 
Log.total.customers   1    3.9135  3.91349  3.80571 0.0528816 
      Primary.Cause  10   15.5513  1.55513  1.51230 0.1396358 
             Season   3    1.0843  0.36143  0.35148 0.7881295 
    Days.since.1990   1    2.8564  2.85637  2.77771 0.0976045 
          Residuals 155  159.3898  1.02832 
 
The (logged) MW effect is by far the strongest effect. The total number of customers served by 
the utility is also a (marginally) significant predictor of the customers lost. There is weak 
evidence of a time trend (p=.098), and weaker evidence of an effect related to cause (p=.14).  
 
Here is output for the model: 
 
 
 
Coefficients: 
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                      Value Std. Error t value Pr(>|t|)  
        (Intercept)  4.1896  1.3327     3.1438  0.0020  
             Log.MW  0.6572  0.1153     5.7006  0.0000  
       Log.duration  0.0337  0.0718     0.4695  0.6394  
    Log.pop.density -0.0195  0.1487    -0.1312  0.8958  
Log.total.customers  0.1820  0.0933     1.9508  0.0529  
 Primary.CauseCrime  3.6575  1.1364     3.2184  0.0016  
     Primary.CauseD  1.0868  1.1074     0.9814  0.3279  
     Primary.CauseE  0.1542  0.4947     0.3117  0.7557  
     Primary.CauseF  0.7506  0.5600     1.3404  0.1821  
     Primary.CauseH  0.6864  0.5019     1.3676  0.1734  
     Primary.CauseO  0.3431  1.0876     0.3155  0.7528  
     Primary.CauseS -0.6940  1.7278    -0.4017  0.6885  
     Primary.CauseT  1.4763  1.1351     1.3006  0.1953  
     Primary.CauseU  1.0386  0.6317     1.6442  0.1022  
     Primary.CauseW  0.4433  0.3795     1.1683  0.2445  
       SeasonSpring -0.3259  0.4581    -0.7114  0.4779  
       SeasonSummer -0.3630  0.3964    -0.9159  0.3612  
       SeasonWinter -0.1314  0.4226    -0.3110  0.7562  
    Days.since.1990  0.0001  0.0001     1.6666  0.0976  
 
Residual standard error: 1.014 on 155 degrees of freedom 
Multiple R-Squared: 0.479  
F-statistic: 7.917 on 18 and 155 degrees of freedom, the p-value 
is 1.787e-014   
162 observations deleted due to missing values  
 
The model implies that a 1% increase in MW lost is associated with a 0.66% increase in 
customers lost, holding all else in the model fixed; a 1% increase in total customers is associated 
with a 0.18% increase in customers lost, holding all else in the model fixed; and (marginally) 
each additional year is associated with an expected increase in customers lost of 
exp(.0365)=1.037, or a 3.7% annual increase in customers lost, holding all else in the model 
fixed. The (weak) primary cause effect is summarized by the adjusted means: 
 
Primary.Cause  
        C  Crime      D      E      F      H      O      S  
   10.717 14.374 11.803 10.871 11.467 11.403 11.060 10.022 
se  0.328  1.081  1.091  0.387  0.438  0.361  1.021  1.689 
 
        T      U      W  
   12.193 11.755 11.160 
se  1.058  0.482  0.211 
 
The adjusted means represent the estimated logged customers lost when all numerical predictors 
are at their mean values, and any other categorical predictors are accounted for. Given there is 
nonzero customer loss, customer losses are higher for crime, third party, demand reduction, and 
unknown causes, and lower for system protection, capacity shortage, equipment failure, and 
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operational error, holding all else in the model fixed. Differences between adjusted means 
correspond to estimates of the multiplicative relative effect of the two causes. So, for example, 
an event related to crime is estimated to have exp(14.374-10.717) = exp(3.657)=38.7 times the 
customer loss of an event related to capacity shortage, holding all else in the model fixed. 
 
There is a problem with this model, in that roughly 7-10 incidents had customer losses that were 
very unusually low. These show up at the bottom of the following plot. This is a plot of the 
observed (logged) customer losses versus the estimated (logged) losses, which would follow the 
line on the plot if the predictions were perfect: 
 

Estimated logged customers

O
bs

er
ve

d 
lo

gg
ed

 c
us

to
m

er
s

8 10 12 14

0
5

10
15

 
 
The low incidents correspond to outages on March 4, 1991 (176 customers lost), March 18, 1993 
(13 customers lost), July 23, 1999 (68 customers lost), May 15, 2003 (2 customers lost), July 2, 
2003 (1 customer lost), and December 5, 2003 (2 customers lost). These incidents are poorly 
modeled with the information available. 
 
If these incidents are omitted, the resultant inferences don’t change materially, but are sharpened 
considerably: 
 
 
 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
             Log.MW   1  28.26771 28.26771 61.98163 0.0000000 
       Log.duration   1   0.71290  0.71290  1.56314 0.2131658 
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    Log.pop.density   1   0.00016  0.00016  0.00035 0.9850837 
Log.total.customers   1   2.79064  2.79064  6.11893 0.0144969 
      Primary.Cause  10  16.46791  1.64679  3.61086 0.0002541 
             Season   3   2.28335  0.76112  1.66887 0.1761861 
    Days.since.1990   1   2.04398  2.04398  4.48175 0.0359196 
          Residuals 149  67.95384  0.45607  
 
Logged MW, logged total customers, cause, and a time trend are all strongly statistically 
significant.  
 
Coefficients: 
                      Value Std. Error t value Pr(>|t|)  
        (Intercept)  4.3597  0.9190     4.7439  0.0000  
             Log.MW  0.6094  0.0774     7.8728  0.0000  
       Log.duration  0.0611  0.0488     1.2503  0.2132  
    Log.pop.density -0.0019  0.0998    -0.0187  0.9851  
Log.total.customers  0.1622  0.0656     2.4736  0.0145  
 Primary.CauseCrime  3.9378  0.7585     5.1915  0.0000  
     Primary.CauseD  0.7722  0.7393     1.0445  0.2979  
     Primary.CauseE  0.7895  0.3372     2.3415  0.0205  
     Primary.CauseF  0.9240  0.3750     2.4642  0.0149  
     Primary.CauseH  0.9103  0.3383     2.6908  0.0079  
     Primary.CauseO  0.3595  0.7276     0.4941  0.6220  
     Primary.CauseS  1.1428  1.3232     0.8637  0.3892  
     Primary.CauseT  1.7655  0.7568     2.3329  0.0210  
     Primary.CauseU  1.3134  0.4221     3.1117  0.0022  
     Primary.CauseW  0.7239  0.2539     2.8515  0.0050  
       SeasonSpring  0.2397  0.3096     0.7744  0.4399  
       SeasonSummer -0.2825  0.2647    -1.0674  0.2875  
       SeasonWinter  0.0290  0.2823     0.1028  0.9183  
    Days.since.1990  0.0001  0.0001     2.1170  0.0359  
 
Residual standard error: 0.6753 on 149 degrees of freedom 
Multiple R-Squared: 0.6629  
F-statistic: 16.28 on 18 and 149 degrees of freedom, the p-value 
is 0  
162 observations deleted due to missing values  
 
A 1% increase in MW is associated with an estimated 0.61% increase in customers lost, holding 
all else in the model fixed; a 1% increase in total customers is associated with an estimated 
0.16% increase in customers lost, holding all else in the model fixed (that is, as utilities get 
bigger, they suffer much less than proportional losses of customers in their incidents, holding all 
else fixed); each passing year is associated with an estimated 3.7% increase in customers lost 
given all else in the model is held fixed. The pattern related to causes is as follows: 
 
Primary.Cause  
        C  Crime      D      E      F      H      O      S  
   10.657 14.595 11.430 11.447 11.581 11.568 11.017 11.800 
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se  0.219  0.721  0.728  0.265  0.293  0.243  0.682  1.299 
 
        T      U      W  
   12.423 11.971 11.381 
se  0.705  0.321  0.142 
 
We see that given there is nonzero customer loss, customer losses are higher for crime, third 
party, and unknown causes, and lower for capacity shortage and operational error, holding all 
else in the model fixed. Predictions based on the model follow the observed values reasonably 
well, although there are still more unusually low values than unusually high values: 
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It is not clear that logged MW should be used as a predictor of logged customers lost, since one 
could argue that both are results of the inherent severity of the incident. This can be explored by 
refitting the regression models without the logged MW predictor. We start with an ordinary least 
squares model, but not surprisingly, this exhibits nonconstant variance. The weighted least 
squares model is as follows: 
 
 
 
 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       Log.duration   1    1.5852 1.585234 1.538035 0.2164727 
    Log.pop.density   1    1.1451 1.145137 1.111041 0.2932230 
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Log.total.customers   1    6.2401 6.240108 6.054314 0.0147849 
      Primary.Cause  11   54.6587 4.968974 4.821027 0.0000016 
             Season   3    0.4849 0.161617 0.156805 0.9251973 
    Days.since.1990   1    0.4341 0.434131 0.421205 0.5171368 
          Residuals 186  191.7080 1.030688 
 
The only significant terms are those for logged total customers and primary cause. Here is a 
summary of the model: 
 
Coefficients: 
                      Value Std. Error t value Pr(>|t|)  
        (Intercept)  5.7295  1.4848     3.8586  0.0002  
       Log.duration  0.0894  0.0721     1.2402  0.2165  
    Log.pop.density  0.1475  0.1399     1.0541  0.2932  
Log.total.customers  0.2343  0.0952     2.4606  0.0148  
 Primary.CauseCrime  3.6588  1.1444     3.1970  0.0016  
     Primary.CauseD  1.3423  1.1239     1.1943  0.2339  
     Primary.CauseE  0.6946  0.4811     1.4439  0.1505  
     Primary.CauseF  1.4748  0.8339     1.7687  0.0786  
     Primary.CauseH  1.2778  0.5416     2.3592  0.0194  
     Primary.CauseN  5.3388  1.5278     3.4945  0.0006  
     Primary.CauseO  1.6409  1.0981     1.4943  0.1368  
     Primary.CauseS -0.1313  1.8096    -0.0726  0.9422  
     Primary.CauseT  3.2755  1.0816     3.0285  0.0028  
     Primary.CauseU  3.2880  0.6495     5.0622  0.0000  
     Primary.CauseW  1.4214  0.3548     4.0056  0.0001  
       SeasonSpring -0.2523  0.4379    -0.5762  0.5652  
       SeasonSummer -0.2459  0.3932    -0.6254  0.5325  
       SeasonWinter -0.2514  0.4172    -0.6027  0.5475  
    Days.since.1990  0.0001  0.0001     0.6490  0.5171  
 
Residual standard error: 1.015 on 186 degrees of freedom 
Multiple R-Squared: 0.2663  
F-statistic: 3.75 on 18 and 186 degrees of freedom, the p-value 
is 2.06e-006 
 
A 1% increase in total customers is associated with a 0.23% estimated increase in customers lost, 
holding all else in the model fixed. The primary cause effect is summarized by the adjusted 
means: 
 
 
 
 
 
 
Primary.Cause  
        C  Crime      D      E      F      H      N      O  
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    9.932 13.590 11.274 10.626 11.406 11.209 15.270 11.572 
se  0.320  1.073  1.076  0.365  0.768  0.420  1.498  1.049 
 
        S      T      U      W  
    9.800 13.207 13.220 11.353 
se  1.783  1.042  0.586  0.185 
 
Customer losses are higher for natural disaster, crime, unknown causes, and third party, and 
lower for system protection, capacity shortage, and equipment failure, holding all else in the 
model fixed. This might be viewed as a more intuitive result than that in the earlier model, since 
the largest customer losses are coming from causes that are clearly beyond the control of the 
utility, while the smallest losses are coming from causes that are internal to the utility. 
 
The unusually small customer losses still show up as distinct: 
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If these incidents are omitted, logged duration now comes in as a significant predictor. 
 
 
 
 
 
 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
       Log.duration   1   2.56276 2.562762 5.232056 0.0233378 
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    Log.pop.density   1   0.77118 0.771181 1.574418 0.2111933 
Log.total.customers   1   3.08369 3.083692 6.295570 0.0129871 
      Primary.Cause  11  50.31277 4.573888 9.337910 0.0000000 
             Season   3   2.10399 0.701330 1.431813 0.2350431 
    Days.since.1990   1   0.45808 0.458078 0.935199 0.3348132 
          Residuals 180  88.16747 0.489819 
 
 
Coefficients: 
                      Value Std. Error t value Pr(>|t|)  
        (Intercept)  6.4084  1.0787     5.9409  0.0000  
       Log.duration  0.1163  0.0508     2.2874  0.0233  
    Log.pop.density  0.1218  0.0970     1.2548  0.2112  
Log.total.customers  0.1768  0.0705     2.5091  0.0130  
 Primary.CauseCrime  3.9623  0.7907     5.0113  0.0000  
     Primary.CauseD  1.0758  0.7762     1.3860  0.1675  
     Primary.CauseE  1.2282  0.3371     3.6429  0.0004  
     Primary.CauseF  1.5693  0.5756     2.7262  0.0070  
     Primary.CauseH  1.4230  0.3764     3.7803  0.0002  
     Primary.CauseN  4.7145  1.0940     4.3093  0.0000  
     Primary.CauseO  1.5332  0.7595     2.0189  0.0450  
     Primary.CauseS  1.5843  1.4367     1.1027  0.2716  
     Primary.CauseT  3.3238  0.7458     4.4568  0.0000  
     Primary.CauseU  3.3640  0.4484     7.5030  0.0000  
     Primary.CauseW  1.5631  0.2450     6.3804  0.0000  
       SeasonSpring  0.2893  0.3055     0.9467  0.3451  
       SeasonSummer -0.1906  0.2720    -0.7007  0.4844  
       SeasonWinter -0.1058  0.2883    -0.3672  0.7139  
    Days.since.1990  0.0001  0.0001     0.9671  0.3348  
 
Residual standard error: 0.6999 on 180 degrees of freedom 
Multiple R-Squared: 0.4231  
F-statistic: 7.335 on 18 and 180 degrees of freedom, the p-value 
is 5.751e-014 
 
A 1% increase in duration is associated with an estimated 0.12% increase in customers lost, 
holding all else in the model fixed; a 1% increase in customers is associated with an estimated 
0.18% increase in customers lost, holding all else in the model fixed. The primary cause effect is 
summarized below: 
 
 
 
 
Primary.Cause  
        C  Crime      D      E      F      H      N      O  
    9.960 13.923 11.036 11.189 11.530 11.383 14.675 11.494 
se  0.221  0.741  0.742  0.258  0.530  0.293  1.075  0.725 
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        S      T      U      W  
   11.545 13.284 13.324 11.524 
se  1.421  0.718  0.405  0.128 
 
Customer losses are higher for natural disaster, crime, unknown causes, and third party, and 
lower for capacity shortage, demand reduction, and equipment failure, holding all else in the 
model fixed. Although demand reduction has replaced system protection as being associated 
with low customer losses when the smallest losses are omitted, the pattern still remains: the 
largest customer losses are coming from causes that are clearly beyond the control of the utility, 
while the smallest losses are coming from causes that are internal to the utility. 
 
 
B. Analysis of duration at the event level 
 
This section examines regression modeling for the (logged) duration of each incident. As was 
noted earlier, this allows for event-level characteristics to be used as predictors, but is based on a 
response variable that is much more variable than in the three-, six-, and twelve-month average 
analyses summarized earlier. 
 
First, here are plots of the observed relationships. 
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We see that there is little evidence of a relationship between logged duration and logged total 
customers. There is evidence of a positive relationship with logged population density (ignoring 
the two rare events at the very high population density level). There is weak evidence of the time 
trend on duration (note that since this plot is in the logged scale, trends upwards will be less 
apparent than in the original scale). There is some evidence of a season effect, with winter and 
spring events longer and autumn and summer events shorter. There is a clear relationship with 
primary cause. Note in particular that the two most common causes, equipment failure and 
weather are very different, with the former associated with shorter events and the latter 
associated with longer ones. 
 
A least squares regression implies that logged population density, primary cause, and season are 
significant predictors, but there is extreme nonconstant variance related to primary cause. 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
    Log.pop.density   1   15.7092 15.70916 5.043797 0.0255918 
Log.total.customers   1    0.1415  0.14149 0.045427 0.8313946 
      Primary.Cause  11  202.8429 18.44027 5.920681 0.0000000 
             Season   3   24.3224  8.10748 2.603098 0.0525254 
    Days.since.1990   1    2.2344  2.23440 0.717407 0.3978090 
          Residuals 249  775.5232  3.11455 
 
 
Here are side-by-side boxplots of the residuals separated by cause, which illustrates the 
nonconstant variance. 
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Weighted least squares (WLS) is used to correct for the nonconstant variance. In this analysis, 
events from causes with less variability, such as capacity shortage, human error, third party, and 
unknown, are weighted higher, while those from causes with more variability, such as demand 
reduction, equipment failure, operational error, and weather, are weighted lower. Here is output 
for the WLS model. 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
    Log.pop.density   1   11.8728 11.87284 11.64325 0.0007518 
Log.total.customers   1    0.0243  0.02433  0.02386 0.8773556 
      Primary.Cause  11   82.2162  7.47420  7.32967 0.0000000 
             Season   3    7.6400  2.54667  2.49743 0.0602774 
    Days.since.1990   1    0.0233  0.02328  0.02283 0.8800299 
          Residuals 249  253.9101  1.01972 
 
The inferential results are relatively unchanged.  
 
Here is output for the model: 
 
 
 
Coefficients: 
                      Value Std. Error t value Pr(>|t|)  
        (Intercept)  0.3099  0.9051     0.3424  0.7323  
    Log.pop.density  0.3324  0.0974     3.4122  0.0008  
Log.total.customers  0.0078  0.0504     0.1545  0.8774  
 Primary.CauseCrime  0.0212  0.8518     0.0249  0.9801  
     Primary.CauseD -1.1692  1.1500    -1.0167  0.3103  
     Primary.CauseE -0.6795  0.4078    -1.6662  0.0969  
     Primary.CauseF -0.2449  0.6356    -0.3854  0.7003  
     Primary.CauseH -2.2477  0.5341    -4.2085  0.0000  
     Primary.CauseN -1.6121  1.2369    -1.3033  0.1937  
     Primary.CauseO -0.5587  1.4469    -0.3861  0.6998  
     Primary.CauseS  0.2674  0.8710     0.3070  0.7591  
     Primary.CauseT  0.4361  0.4262     1.0232  0.3072  
     Primary.CauseU  1.7313  0.6414     2.6993  0.0074  
     Primary.CauseW  0.9379  0.3760     2.4945  0.0133  
       SeasonSpring  0.0507  0.3721     0.1362  0.8918  
       SeasonSummer -0.3310  0.3323    -0.9959  0.3203  
       SeasonWinter  0.4791  0.3673     1.3043  0.1933  
    Days.since.1990  0.0000  0.0001     0.1511  0.8800  
 
Residual standard error: 1.01 on 249 degrees of freedom 
Multiple R-Squared: 0.3218  
F-statistic: 6.949 on 17 and 249 degrees of freedom, the p-value 
is 1.111e-013  
133 observations deleted due to missing values  
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The model implies that a 1% increase in population density is associated with a 0.33% increase 
in duration, holding all else in the model fixed. The primary cause and season effects are 
summarized by the adjusted means: 
 
Primary.Cause  
         C   Crime       D       E       F       H       N  
    2.1383  2.1595  0.9691  1.4588  1.8934 -0.1094  0.5262 
se  0.3410  0.7777  1.1014  0.2056  0.5381  0.3960  1.1786 
 
         O       S       T       U       W  
    1.5796  2.4057  2.5744  3.8696  3.0762 
se  1.4105  0.7945  0.2536  0.5452  0.1789 
 
 
 Season  
   Autumn Spring Summer Winter  
   1.8288 1.8794 1.4978 2.3078 
se 0.3478 0.3106 0.2460 0.2919 
 
The season effect is noting that, holding all else in the model fixed, winter events have expected 
duration that is 2.25 times the duration of summer events, with autumn and spring in between. 
Presumably this has something to do with issues like the difficulty in traveling to downed power 
lines in snow and ice. 
 
The adjusted means for primary cause show that, holding all else fixed, incidents caused by 
human error, natural disaster, demand reduction, and equipment failure tend to be shorter, while 
those caused by system protection, third party, weather, and unknown causes tend to be longer. 
Considering that more than ¾ of the events are caused by equipment failure or weather, the 
contrast between the two is particularly important (events caused by weather are expected to last 
more than five times longer than those caused by equipment failure, holding all else in the model 
fixed). 
 
The plot below shows that there isn’t any evidence of any systematic problem with the 
predictions from this model, although two incidents are particularly poorly predicted (one high, 
the other low). These correspond to a weather-related event on December 22, 2003 of .02 hours, 
and an equipment-related event on July 6, 2004 of 822.0 hours: 
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If these incidents are omitted, the inferences remain the same, but are stronger than before: 
 
 
 
 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
    Log.pop.density   1   13.5121 13.51212 14.85111 0.0001484 
Log.total.customers   1    0.0074  0.00745  0.00819 0.9279762 
      Primary.Cause  11   90.5572  8.23247  9.04827 0.0000000 
             Season   3   11.2945  3.76483  4.13790 0.0069308 
    Days.since.1990   1    0.0036  0.00364  0.00400 0.9496319 
          Residuals 247  224.7303  0.90984    
 
Here is a summary of the model: 
 
Coefficients: 
                      Value Std. Error t value Pr(>|t|)  
        (Intercept)  0.2569  0.8564     0.3000  0.7644  
    Log.pop.density  0.3557  0.0923     3.8537  0.0001  
Log.total.customers  0.0043  0.0477     0.0905  0.9280  
 Primary.CauseCrime -0.0280  0.8048    -0.0348  0.9723  
     Primary.CauseD -1.1358  1.0865    -1.0454  0.2969  
     Primary.CauseE -0.7180  0.3863    -1.8585  0.0643  
     Primary.CauseF -0.1610  0.6006    -0.2681  0.7888  
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     Primary.CauseH -2.2390  0.5048    -4.4355  0.0000  
     Primary.CauseN -1.7305  1.1688    -1.4806  0.1400  
     Primary.CauseO -0.5046  1.3668    -0.3692  0.7123  
     Primary.CauseS  0.3997  0.8231     0.4855  0.6277  
     Primary.CauseT  0.5454  0.4031     1.3532  0.1772  
     Primary.CauseU  1.8346  0.6061     3.0268  0.0027  
     Primary.CauseW  1.0477  0.3561     2.9424  0.0036  
       SeasonSpring  0.0403  0.3515     0.1148  0.9087  
       SeasonSummer -0.4000  0.3144    -1.2724  0.2044  
       SeasonWinter  0.5937  0.3480     1.7062  0.0892  
    Days.since.1990  0.0000  0.0001    -0.0632  0.9496  
 
Residual standard error: 0.9539 on 247 degrees of freedom 
Multiple R-Squared: 0.3705  
F-statistic: 8.55 on 17 and 247 degrees of freedom, the p-value 
is 0  
133 observations deleted due to missing values  
 
A 1% increase in population density is associated with an estimated 0.36% increase in customers 
lost, holding all else in the model fixed. The patterns related to causes and seasons are as 
follows: 
 
Primary.Cause  
         C   Crime       D       E       F       H       N  
    2.1135  2.0854  0.9776  1.3954  1.9524 -0.1255  0.3829 
se  0.3225  0.7346  1.0403  0.1952  0.5084  0.3739  1.1135 
 
 
 
         O       S       T       U       W  
    1.6088  2.5131  2.6589  3.9481  3.1611 
se  1.3324  0.7508  0.2401  0.5152  0.1699 
 
 
 Season  
   Autumn Spring Summer Winter  
   1.8308 1.8711 1.4308 2.4245 
se 0.3285 0.2933 0.2327 0.2767 
 
The season effect implies that, holding all else in the model fixed, winter events have expected 
duration that is 2.7 times the duration of summer events, with autumn and spring events in the 
middle.  
 
The adjusted means for primary cause show that, holding all else fixed, incidents caused by 
human error, natural disaster, demand reduction, and equipment failure tend to be shorter, while 
those caused by system protection, third party, weather, and unknown causes tend to be longer. 
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In particular, events caused by weather are expected to last almost six times longer than those 
caused by equipment failure, holding all else fixed.  
 
The model tracks the observed logged durations reasonably well. 
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The absence of a time trend in this model, given the earlier evidence for one in the season-level 
analysis, is worth comment. An analysis just on the time trend (Days since 1990) does yield 
statistical significance, as the following output shows: 
 
Coefficients: 
                 Value Std. Error t value Pr(>|t|)  
    (Intercept) 1.1828 0.2461     4.8067  0.0000   
Days.since.1990 0.0003 0.0001     3.7625  0.0002   
 
Residual standard error: 1.191 on 299 degrees of freedom 
Multiple R-Squared: 0.0452  
F-statistic: 14.16 on 1 and 299 degrees of freedom, the p-value 
is 0.0002024  
99 observations deleted due to missing values 
 
This model implies an estimated 11.6% annual increase in duration (exp(365*.0003)=1.116), 
which is not that different from the 14.6% found from the seasonal data (it is smaller because of 
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the increased noise in the incident-level data). This reinforces the impression that the overall 
duration time trend, ignoring specific information about the individual events, is real. Here is a 
loess curve for the estimated duration using these incident-level data: 
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This U-shaped pattern is broadly similar to the one evident in the season-level data. The 
estimated annual changes in duration based on this curve are as follows: 
 
1991 -0.28198311 
1992 -0.21725013 
1993 -0.14403860 
1994 -0.07117135 
1995  0.01160909 
1996  0.25814792 
1997  0.24967458 
1998  0.16656962 
1999  0.13245628 
2000  0.11124667 
2001  0.18375624 
2002  0.28224436 
2003  0.40632285 
 
These can be compared to the season-level numbers from Section I. C., and they are very similar 
(a bit smaller, which reflects the additional noise in the event-level data). Up until 1994, 
durations were getting shorter. This turned around in 1995, and for a few years the average 
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duration went up 15-25% annually. This was followed by a long period (1998-2001) of fairly 
stable growth of 10-20%. Finally, from 2002 on, average durations have started increasing again 
at a high 30-40% rate. Thus, the constant estimate of 11.6% annually obtained from the 
regression model actually seems to mask some very different periods in average duration change. 
 
There is another factor at play here that leads to the time trend disappearing in the regression 
model. The models in this section take into account the other potential predictors. Note the 
results of a model that adds season and logged population density to the time trend: 
 
                     Df Sum of Sq  Mean Sq  F Value     Pr(F)  
    Days.since.1990   1    7.1460  7.14605 5.527602 0.0194659 
             Season   3    2.1804  0.72681 0.562200 0.6404119 
    Log.pop.density   1   10.1482 10.14815 7.849787 0.0054649 
Log.total.customers   1    3.5317  3.53168 2.731823 0.0995739 
          Residuals 260  336.1263  1.29279 
 
The time variable is still highly significant, even with these other predictors. However, when 
primary cause is added, its significance disappears (as in the table earlier in this section), which 
shows that it is the primary cause effect that is driving the apparent time trend effect. (Note also 
that including primary cause allows a seasonal effect to show up, and the logged customers effect 
to disappear.) 
 
Recall that more than ¾ of the incidents are either equipment failure- or weather-related, and that 
incidents caused by equipment failure tend to be shorter, while weather-related ones tend to be 
longer. In fact, weather-related incidents are becoming more common, while equipment failure-
related ones are becoming less common, and this accounts for much of the overall pattern of 
increasing average durations by season. The following plots show the changing proportions of 
incidents from these two causes at the semiannual level; it is clear that since the mid 1990s, 
relatively speaking equipment failures are going down and weather incidents are going up, while 
before that the opposite pattern was occurring. This corresponds exactly to the drop in durations 
up to 1995, and the increase since then noted earlier. Thus, it would seem that further study of 
why equipment failures are becoming less common (relatively speaking) and weather-related 
events are becoming more common is warranted. 
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Equipment failure
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