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ABSTRACT

This report presents a new methodology for strategic decision making under
uncertainty and presence of adversaries. This investigation is motivated by
the need to determine optimal strategies under uncertainty against an adver-
sarial and adaptive opponent. Such problems arise in the context of terrorism
threats. To model investment decisions that pertain to homeland security,
one should account for both uncertainty and the antagonistic character in-
herent in the problem. To this end, we propose a novel approach, robust
stochastic games. We focus on incomplete information stochastic games and
adopt a robust approach to account for uncertainty present in our problem
in two dimensions. First, we consider that the adaptive nature of the adver-
sary is uncertain. In other words, we propose a new approach that accounts
for the uncertainty in the conversion from one threat category to the other
that is based on the alternatives of the adversaries. Second, we consider
that payoffs to the opponents are uncertain. We present an interesting new
result, existence of equilibrium points in robust stochastic games. A new
formulation that uses robust optimization techniques is proposed to solve
robust stochastic games. Preliminary results are presented on a simple ex-
ample with partial unknown data. First, uncertain transition probabilities
that belong to convex hull uncertainty sets are considered in this example
with exact immediate costs. Next, uncertainty is considered in both transi-
tion probabilities and immediate costs. Performance of the nominal solution
when parameters attain their worst-case values is compared with the perfor-
mance of the robust solution when data is certain. It is observed in this small
example that the percentage savings resulting from using robust strategies
versus the nominal strategies when the parameters attain their worst-case
values are higher than the losses caused by using robust strategies when pa-
rameters attain their nominal values. It is also observed that compared to
the uncertainty in transition probabilities, uncertainty in immediate costs
has a greater effect on the robust value of the game. The next phase in
this research includes the development of the model for the MANPADS case
study, quantification of the model via expert elicitation, and computation of
robust optimal strategies.
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1 Introduction

The threat of catastrophic terrorism has motivated multi-billion dollar in-
vestments in the United States and elsewhere, with the goal of improving
safety and security. Investments of this magnitude demand careful consider-
ation of the costs of implementation, operation and maintenance, as well as
the benefits derived from a reduction in exposure to future losses.

Unlike naturally occurring or accidental events – such as floods, earth-
quakes or system failures – terrorism is fundamentally adversarial and adap-
tive. Thus investments designed to protect against one type of terrorism
threat (e.g., against blasts, biological agents, or radiological devices) have
potential to elevate the risk of other types of terrorism. Furthermore, inter-
ventions to protect against a certain type of terrorism threat category may
influence the terrorists’ selection of alternative methods within the same
threat category. On the other hand, investments targeted at reducing the
general effectiveness of terrorist organizations, or targeted at the willingness
of individuals to engage in terrorism, may protect against multiple types of
terrorism.

Other distinctions among accidental events and terrorism are the different
requirements they impose on cost/benefit analysis. In the study of accidental
events and related safety modeling techniques, it is a common practice to use
data, expert judgments, or to use a blend of hard data and expert opinions
in suitably constructed models. For instance, in the aviation safety domain
in the US, it is fairly easy to access large historical accident / incident data.
However, it is extremely difficult in the terrorism case to obtain exact data.
This could be attributed to the short history of terrorism in the US. Fur-
thermore, another factor that contributes to the uncertainty in the terrorism
domain is the fact that any data to be used in related models are subject to
change in the future.

Besides the fact that terrorism is adversarial, the intensity of adversarial
intentions is volatile. Although this intensity level could be moderate in some
cases, it is a fact that terrorism is fully antagonistic.

Terrorism is also fundamentally different from the risk of warfare among
states, especially when it is not state sponsored. Conventional warfare is a
less random occurrence than terrorism because state adversaries are more
likely to announce their specific intentions and because their actions are
more easily monitored through surveillance. States are also more easily de-
terred through the threat of a specific military response that inflicts losses
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on the adversary. In the case of terrorism, the opponent attacks with greater
frequency, with greater randomness, and often without the opportunity of
deterrence through a direct military response. Thus both the methods of
protecting against warfare, and the methods for analyzing the threat, are
fundamentally different than they are for terrorism. Last, terrorism also dif-
fers from other intentional criminal acts. As witnessed on 9/11, terrorism
has potential to produce more catastrophic events than simple criminal acts,
as well as to introduce radically new tactics in its effort to produce fear.
Tools used to model exposure to criminal losses, which are common in the
insurance industry, are not easily modified to evaluate adaptable antagonistic
terrorist adversaries.

One goal of the Center for Risk and Economic Analysis of Terrorism
Events (CREATE) is to develop tools to guide investments in counter ter-
rorism, accounting for economic costs and benefits, and accounting for non-
state-based terrorism risk. Common to such tools are the underlying models
used and corresponding input data to these models. In terrorism related secu-
rity modeling, it is a clear fact that the data necessary to feed corresponding
models could not be measured exactly and / or are unknown. Furthermore,
even if we assume that certain parts of the input data to security models
could be measured, it is another problem that the data is subject to change
in the future. Hence, using some estimate data in a certain time period
could be useless in future periods. This could result in investments that are
no longer applicable to their intended targets and consequently in higher
costs. Given that investments could be at a level of multi-billion dollars,
the issue of robustness of homeland security investments needs significant
attention.

The purpose of this report is to present a new methodology that ad-
dresses robustness in homeland security investment decisions with respect to
uncertainties present in the problem. The adversarial aspect of this prob-
lem is captured by an existing game theoretical approach, namely stochastic
games. Stochastic games are briefly introduced in section 3.1. In our new
approach, we focus on incomplete information stochastic games and adopt
a robust approach to account for uncertainty present in our problem in two
dimensions. First, we consider that the adaptive nature of the adversary is
uncertain. In other words, we propose a new approach that accounts for
the uncertainty in the conversion from one threat category to the other that
is based on the alternatives of the adversaries. Second, we consider that
resultant payoffs to the opponents based on their choices are uncertain.
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1.1 Research Problem and Objectives

Determining investment strategies to improve security against terror differs
radically from conventional problems of decision making under uncertainty.
This is due to the adaptive adversarial behavior of attackers and also to
the lack of exact data needed to model such problems. A way to deal with
limited data is to use expert knowledge in models. Of course, this requires
expert elicitation, a laborious process even for interviews with a small group
of experts. Even if expert knowledge is used in models related to invest-
ment decisions, elicitation of experts typically leads to bands of uncertainty
that cannot be ignored. If such uncertainty values are used in a numerical
evaluation, resulting values may have very large uncertainty bands. On the
other hand, continuing to work with point estimates of risk may give a wrong
interpretation of any resulting risk value.

Our research objective in this study is to model and solve investment deci-
sion problems using a suitable methodology that accounts for the uncertainty
inherent in the problem as well as for the uncertain adversarial behavior of
opponents. To this end, we follow a game theoretical approach that has a
long and illustrious history, namely, stochastic games.

Stochastic games are first introduced to the game theory literature by
Lloyd S. Shapley in 1953. In this (non cooperative) two-person zero-sum
game, the play proceeds in stages, from one state to the other according to
transition probabilities controlled jointly by two opponents. It consists of
states and actions associated with each player. Once in a state, each player
chooses their respective actions. The play then moves into another state with
some probability that is determined by the actions chosen and by the state in
which they are chosen. Given that opponents make their respective decisions
in a given stage, a cost is incurred to each player. An opponent discounts
his projected cost by a factor β, 0 ≤ β < 1. The usual interpretation of this
factor is that decision makers (or opponents) consider that costs incurred in
future stages have less value in the present stage. Another interpretation of
this factor in homeland security applications is the interest rate interpretation
that determines the return on investment that could have been earned if the
decision maker had not invested the funds in security investments.

The first paper on stochastic games in 1953 considers two-person zero-
sum stochastic games. Two person indicates that there are two players in
the model. Zero sum denotes that a player’s (usually player 1) gain is the
cost to the other player (usually player 2). Hence, there is a complete utility
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transfer from one player to the other and payoffs to the players sum up to
zero. The two-person zero-sum scheme is later on extended to the general-
sum n-person stochastic games by Fink (1964). In the general-sum n-person
stochastic games, one cannot capture the fully antagonistic intentions of the
players. Nevertheless, completely antagonistic goals are captured in the two-
person zero sum case, a special class of general sum n person stochastic
games. This is due to the property that a player’s gain is the loss to the
other.

A crucial property of stochastic games as also pointed out in [16] is that
since costs and transition probabilities depend on the decisions of both deci-
sion makers, as well as on the current state, the fate of the decision makers
is coupled in the process, even though their choices are made independently
and secretly of one another. Note that this property is intimately related
to the characterization of security investment decisions in the presence of
terrorism threats.

In this report, we extend the ideas in [54] by introducing a new approach,
robust stochastic games. First and foremost, we propose a robust approach to
homeland security related decisions, since very small changes in parameters
of this problem domain (e.g., any parameters for cost / benefit analysis in
homeland security applications) could result in significant changes in ensuing
decisions that the decision makers follow as outputs of proper models. The
decision environment we deal with in this research has the following aspects
to it.

• Clearly, the decisions to be implemented in homeland security appli-
cations are regarding very sensitive issues such as, first, human lives,
and second, very significant amount of funds to be allocated to security
investments.

• The data related to homeland security applications are subject to un-
certainty at the time of the decisions to be made. Furthermore, the
data are subject to changes in the future.

• Even if we suppose that data could be extracted in some manner from a
given source, they cannot be measured, estimated, or computed exactly.

These properties of our decision problem are precisely the character of a
decision environment where a robust approach is appealing. Robust models
are used to represent uncertainty via uncertainty sets. These uncertainty sets
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are not equipped with any probability distributions. In the robust approach,
uncertain parameters are not known but it is known that they belong to a
set. Determining probability distributions on data is a very difficult and la-
borious task, especially in the case of homeland security. Hence, robustness,
as a distribution-free approach suggests significant promise in terms of reduc-
ing modeling costs and of characterizing the uncertainty in our problem via
bounded uncertainty sets, rather than probability distributions. In this sense,
robust optimization suggests to optimize an objective function with respect
to the worst-case values that the uncertain parameters could attain, with
respect to the values the decision variables attain. In this approach, neither
the values of the decision variables, nor those of the uncertain parameters,
are known a priori.

The worst-case approach may first seem conservative and perhaps in-
timidating in the case of homeland security decisions. One may claim that
considering only the worst-case scenarios is a poor approach since the worst-
case may seem to have no limit to it. This concern fails for the following
reasons. First, we do not adopt a worst-case approach to determine the
worst threat category that could happen. Our robust approach pertains to
parameters in each threat category. In this study, we aim to break down
the adversarial decision processes into smaller components. For example, if
aviation security is a threat category, we could consider the transportation
of weapons in this category as an individual step. The step of transportation
of weapons encompasses alternatives to the adversaries, corresponding data
such as payoffs, and likelihood of conversions to other steps based on the
alternatives chosen. We consider uncertainty in the data of such steps that
belong to a set of values that are bounded and adopt a worst case approach
against possible realizations of the uncertain data. Hence, our endeavor is to
determine best strategies against possible realizations of parameters in each
threat category.

Second, the worst-case is with respect to the values that the decision
variables attain as an outcome of robust models. Hence, if we suppose that
a conversion probability to a worse threat category is between 0.2 and 1,
this does not mean that our approach chooses the worst-case value 1. As
we already pointed out, the uncertain data attain their worst-case values
with respect to the attained values of our decision variables. Third, although
we present here that the worst-case uncertain data values are attained with
respect to the values of the decision variables, this still may be considered
as a conservative approach. However, there are ways to deal with the level
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of conservatism in the robust optimization literature and these techniques
could be applied to our models.

The robustness of the approach proposed in this report not only concerns
the future changes in uncertain parameters but also accounts for possible
future threats. This is so because the model we propose not only accounts
for the current stage of threats but also considers possible future payoffs
resulting from intentions to convert to different threat categories. Therefore,
two aspects of the new model proposed are the robustness that considers
future changes in costs and transition probabilities as well as robustness in
the decisions that pertain to threat categories possible to arise in future.

Our main objective then is to determine investment decisions that re-
main optimal with respect to (future) changes in costs incurred as well as to
changes in transition probabilities from one stage to the other. Furthermore,
we aim to implement decisions that remain optimal in the presence of future
threats and conversions from thereon.

This report is organized as follows. Section 2 introduces survey of liter-
ature on decision making under uncertainty in the presence of adversaries.
In section 3.1 and 3.2, we introduce the foundations of the new method-
ology proposed. Specifically, section 3.1 presents stochastic games and 3.2
briefly outlines robust optimization. In section 3.3, we formulate our novel
approach, robust stochastic games. Section 4 presents interesting new results
that enables us to formulate our problem as an optimization problem. We
aim to prove in this section that robust stochastic games have equilibrium
points in the sense of Nash’s pioneering work in [41]. In other words, we seek
whether decisions that prescribe us the best response to the other decision
makers’ best strategies could be found under uncertainty. Second, we intend
to solve the natural problem that follows, i.e., to find such optimal robust
decisions. To this end, we make use of an emerging body of literature in
convex optimization, namely, robust optimization. We concretize the ideas
presented in earlier sections in section 5, via a small example. Finally, section
6 concludes the report.
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2 Literature Survey

2.1 Probabilistic Risk Analysis (PRA)

The PRA method was initially developed for the purpose of assessing the
safety of nuclear reactors. Expert elicitation is typically used as an input
to risk models along with historical failure data. Bayesian methods are also
frequently used in PRA, which is affected by the assumed prior probability
distributions [6]. In this section we focus on the application of PRA to
adversarial risks.

A tool is introduced in [29] that is built to assist anti terrorism planners
at military installations to draw inferences about the risks of a terrorist at-
tack. This tool allows anti terrorism planners to analyze and manage a large
portfolio of risks simultaneously by encoding the knowledge about assets and
risks into Bayesian network fragments that could be dynamically combined at
run-time into a Bayesian network for assessing risks specific to a given instal-
lation and situation. The data sources for this hierarchical network include
the planners own subjective assessments, historical database information, an-
alytical model results and simulation results integrated into various nodes on
the Bayesian network. The network is dynamically constructed by the tool
and is solved and presented to the user for each combination of asset and
threat that the user describes.

Laskey and Levitt (2002) provide a practical, computational methodology
to encode a distributed library of patterns for automated reasoning about as-
pects of homeland defense against terrorism. Multi-Entity Bayesian networks
(MEBNs) provide a means of encoding repeated patterns and relationships
in the form of network fragments. These fragments are combined to form
situation specific Bayesian networks. Authors propose the use of MEBNs as
the inferential cornerstone of a cumulative national, distributed knowledge
base for homeland defense. This paper illustrates the use of MEBNs with
an example concerning a multi-city coordinated bio-warfare attack. Authors
attempt to show how current trends in the use of on-line reporting by health
care and related facilities have the potential to enable opportunistic detection
of and response to such an attack.

Weaver et al. (2001) describe a research effort to develop models of ter-
rorist organizations that will permit to stimulate and predict what types
of decisions these organizations and their agents might be likely to make.
Authors contend that terrorist organizations and individual decision makers

11

DRAFT



can be described via Markov Decision Processes and repeated Bayesian net-
works. Another task of this research is to gather literature sources and to
assemble a database that contains profiles of a reasonable sample of terrorist
organizations and to use this information in conjunction with the models
developed.

Singh et al. (2004) develop a tool to detect and track terrorist activ-
ity. Authors follow two probabilistic approaches: Hidden Markov Models
(HMMs) and Bayesian networks (BNs). Authors assert that HMMs, which
are used for modeling partially observed stochastic processes, are an ideal way
to make inferences about the evolution of terrorist networks. The HMMs
detect the monitored terrorist activity and measure threat levels, whereas
BNs combine the likelihoods from many different HMMs to evaluate the cu-
mulative probability of terrorist activity. In other words, BNs represent the
overarching terrorist plot and the HMMs, which are related to each BN node,
represent detailed terrorist subplots. A case study for the 2004 Olympics is
presented in this paper as an example.

Haimes (2002) offers a holistic risk assessment and management frame-
work for modeling the risks of terrorism to the homeland. According to this
paper, two major interconnected systems are the homeland and the terrorist
network systems. The variables pertaining to the two systems are considered
and their interactions are presented in a schematic way. Many other articles
on PRA related to security modeling, some of which are cited here, are re-
ferred to in [7]. Although PRA is helpful to gain insight about security risks,
it lacks the adversarial antagonistic aspect that is extensively present in the
homeland security risk modeling domain. Hence, the next section is devoted
to another approach that could confront this adaptive perspective.

2.2 Game Theory

Social scientists have written many papers on applications of game theory to
terrorism, as explained in [49]. The authors contend that game theory cap-
tures the strategic interactions among terrorists and targeted governments,
that is between players, where actions are interdependent and neither of the
sides can be considered passive. Other reasons include the rationality as-
sumption of the players in games and ability of games to represent gains or
losses to a player through payoffs. The main purpose of this paper is to review
how game theory has been used in the literature and to present new appli-
cations that include terrorists choice of targets, governments choice between
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preemption and deterrence, and the government concessionary policy when
terrorists are of two minds: hard-liners and moderates. For example, for the
choice between preemption and deterrence, a three-player game is played in
normal form that includes the US, the UK and the terrorist organization.
For the government concessionary problem, a model of bargaining between
a government and a terrorist group with moderate and hard-line members is
considered.

It is important to note that Sandler and Arce (2003) use a simple game
theory model to answer high-level, generic questions. The authors note that
the model would benefit from a multi-period analysis of terrorist campaigns,
where terrorist resource allocation is studied over time. Another area of fu-
ture work could be differential games to examine how terrorist organizations
are influenced by successful and failed operations. The dynamics of strategic
choices of both players can be captured with this approach by modeling for
the rate of change over time of resources for each player. Finally, the authors
note that cooperative game theory has never been applied to the study of ter-
rorism, which would enable analysis of shared intelligence, training facilities,
and operatives to strengthen their abilities.

Sandler et al. (1983) present models that depict the negotiation process
between terrorists and government policymakers for incidents where hostages
are seized and demands are issued. Lapan and Sandler (1988) present a
game in extensive form where the government first chooses the level of deter-
rence that consequently determines the logistical failure or success of terror-
ists when they engage in a hostage mission. Atkinson et al. (1987) extend
Nash’s bargaining game, where time is taken into consideration. Sandler and
Siqueira (2002) present an application of game theory that involves terrorists
choice of targets for a three-player game involving two targeted governments
and a common terrorist threat. Lapan and Sandler (1993) analyze a scenario
via a two-period game, where the government is incompletely informed about
the terrorists capability. The extent of terrorist attacks in this scenario can
provide information to the government about the type of the terrorist group.

Faria (2003) makes two contributions to the literature on terrorism: 1)
It presents a model that explains the cyclical characteristic of terrorist at-
tacks, and 2) It improves on the existing theoretical cyclical models since
it takes into account terrorists motivations and decision-making explicitly.
A differential game is used between terrorists and the government in which
terrorists maximize the number of attacks subject to a constraint that com-
bines terrorists resources and government anti-terrorist policies. This model
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is a standard microeconomic model, where the representative terrorist group
solves a maximization problem based on preferences, actions, incentives, and
budget restrictions. The government problem concerns the maximization of
national security. The solution of the terrorist problem yields a time path for
terrorist activities. The government takes the time path of terrorist activities
into account when maximizing national security over time. The solution of
the government problem yields a limit cycle between enforcement and terror-
ist activities. The permanent cyclical paths in enforcement and terror cause
national security and terrorist stocks to display cyclical trajectories as well.

D’Artigues and Vignolo (2003) study the emergence of the recent form of
terrorism using evolutionary game theory. The model in this paper presents
terrorism as the result of competition between countries, when the desire to
imitate the leading country is frustrated by the impossibility of doing so.
Authors define a multi-country setup where interaction takes place in an
international trade game, which is a coordination game. In particular, this
paper uses the evolutionary game model to describe the long-run behavior of
n countries.

Kunreuther and Heal (2003) consider security as a problem among agents
and focus on situations where the security levels of members of a group are
interdependent. The main idea in this paper is that the dependence of one
agents security on the behavior of others may partially or completely negate
the payoffs it receives from its own investment in protective measures. These
cross-effects are referred to as contagion. Authors illustrate this argument
by reference to an airline that attempts to determine whether to install a
baggage checking system. In making this decision, the airline needs to bal-
ance the cost of installing and operating such a system with the reduction in
the risk of an explosion from a piece of luggage not only from the passengers
who check in with it, but also from the bags of passengers who check in on
other airlines and then transfer to it. In this example, the incentive to invest
in security decreases if other airlines fail to adopt protective measures. As
the authors indicate, this paper examines the case where all agents are iden-
tical. Heal and Kunreuther (2003) consider situations where the agents have
different protection costs and risks, and where the actions creating potential
losses are impacted by agents protective decisions. Future research directions
suggested in the paper include examining how agents behave in multi-period
models and determining appropriate behavioral models of choice that could
characterize individuals who make imperfectly rational decisions.

Major (2002) presents another application of game theory, which includes
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a simplified model of terrorism risk to develop a probability distribution of
losses. However, this effort captures only the severity component of risk
that is of potential interest to the insurance professionals. The losses that
could occur with certain probabilities are revealed given that an attack is
attempted.

Game theory is a suitable way to model adversarial decision-making
processes. However, this approach still has limitations and simplifications.
Game theory applications could be supported with additional modeling method-
ologies as described below.

2.3 Game Theory and Influence Diagrams

Pate-Cornell and Guikema (2002) present a generic influence diagram model
for setting priorities among threats and among countermeasures. The ran-
dom variables used in the authors first model is fairly generic and account for
types of terrorist groups, their access to materials, cash, types of weapons,
and etc. For instance, only one decision variable is used to represent U.S.
countermeasures. The authors next model elaborates on the previous one by
considering two influence diagrams: one for the terrorist behavior and the
other for the U.S. Results pertaining to the influence diagram for terrorist
behavior are then used as inputs to the influence diagram for US. Hence,
this model is called two-sided. The authors then consider using the two-
sided diagram in a dynamic fashion via discrete time steps. At each step,
each side updates its beliefs, objectives, and decisions based on the previ-
ous step. It is also denoted that each side is uncertain about the other’s
actions and state of knowledge. According to the authors, another change
that needs to be included in the model is the evolution of the organizations
involved, the emergence of new groups, or a new structure of existing groups
and networks. Although these ideas are put forward, no implementations
or quantitative illustrations exist with regards to the dynamic approach or
evolutions of organizations.

According to Koller and Milch (2001), the traditional representations of
games using the extensive form or the normal form obscure much of the
structure that is present in real-world games. Hence, authors propose a new
representation language, named multi-agent influence diagrams (MAID), for
general multi-player games. This approach extends influence diagrams to a
context where more than one decision maker is involved, an idea first exam-
ined by Shachter (1986). MAIDs allow the dependencies among variables to
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be represented explicitly, whereas both the normal and the extensive form
obscure certain important relationships among variables. MAIDs represen-
tation extends the Bayesian network formalism [46] and influence diagrams
[28] to account for the decision problems involving multiple decision makers.
They have defined semantics as non-cooperative games. Just as Bayesian
networks make explicit the dependencies among random variables, MAIDs
make explicit the dependencies among decision variables. They are also re-
lated to the formalism presented by La Mura (2000), where network repre-
sentation for games is developed. Solutions to MAIDs consider the strategic
independence structure on the diagram. Extensions to this research could
be establishing the relations among competitive Markov decision processes,
stochastic games, and MAIDs. Another extension could be exploring ways
to integrate the issue of evolution over time into the MAIDs framework.

Brynielsson and Arnborg (2004) review some military applications of
gaming and introduce a game component into an influence diagram example.
Authors illustrate the use of Bayesian game-theoretic reasoning for operations
planning by transforming a decision problem into a Bayesian game.

Virtanen et al. (2004) describe a multistage influence diagram game for
modeling the maneuvering decisions of pilots in one-on-one air combat. Vir-
tanen et al. (2004b) describe an extension of the influence diagram approach
into a dynamic multistage setting without any game aspect. Authors con-
tend that this paper is the first elaboration where ideas regarding multi-agent
multi-period influence diagrams are combined and implemented. Dynamic
programming is considered for the solution of the model in this paper. To
cope with the combinatorial explosion, authors trade the solution of the
complete game with the computing time and apply a moving horizon control
approach, where the horizon of the original influence diagram is truncated
and a dynamic game with a shorter planning horizon is solved at each deci-
sion instant. Instead of the whole duration of the game, this approach allows
the players to update their information about the state of the system at any
moment over the limited planning horizon. Virtanen et al.s solution approach
is inspired by Cruz et al. (2002), who contend that dynamic game theory is
a suitable formulation for problems that involve adversaries interacting with
each other over a time period. Cruz et al. (2002) denote that traditional
solutions from dynamic game theory that involve optimizing objective func-
tions over the entire time horizon of the system are extremely difficult but not
impossible to derive. Hence, the authors discuss a solution approach, where
at each step the players limit the computation of their actions to a shorter
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time horizon that may involve only the next few time steps. This moving
horizon Nash equilibrium solution proves to be useful in near term decisions
of the adversaries. An important extension to this research effort could be
accounting for the uncertainty in payoffs by combining robust optimization
techniques with game theory.

2.4 Game Theory and Reliability

Many of the applications of reliability to security consider the threats against
critical infrastructure, such as water supply systems (Haimes, 2002). How-
ever, many applications do not consider an adaptive adversary. Therefore,
incorporating game theory and risk and reliability analysis could be a fruitful
approach [7]. Hausken (2002) attempts to combine probabilistic risk analy-
sis (PRA) and game theory by associating each unit in a reliability system
with a player. By doing so, a behavioral dimension is introduced into PRA
framework. The article demonstrates the different conflicts that arise among
players in series, parallel, and summation systems over which players incur
costs.

Bier et al. (2004) apply game theory and reliability analysis to identify
optimal defenses against intentional threats to system reliability. Various
scenarios are considered in this paper such as perfect attacker knowledge of
defenses and single attack with constrained defender budget or no attacker
knowledge and single attack with unconstrained defender budget. Results of
this paper emphasize the value of redundancy as a defensive strategy. Ac-
cording to the authors, future research could include extending this work to
combinations of parallel and series systems rather than focusing only on pure
parallel or series systems. Finding optimal strategies for arbitrary systems
is difficult. Hence, near-optimal heuristic attack and defense strategies could
be developed. Another promising area of future research is to extend the
models to include time, rather than the current static or snapshot view of
system security. This could allow the modeler to consider imperfect attacker
information as well as multiple attacks over time. Another interesting fu-
ture research topic could be the relation of stochastic games and reliability
analysis.

In a more recent effort, Azaiez and Bier (2004) extends results for de-
fense of simple systems to combined series/parallel systems of more realistic
complexity. This effort sometimes yields counterintuitive results, such as the
observation that defending the stronger components in a parallel subsystem
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can actually impose greater burdens on prospective attackers than hardening
the weaker components. The authors indicate that the approach is limited to
cases where the cost of attacks increases linearly with regards to the defensive
investments. However, this may hold only for a limited range of defensive
investments. Second, an extension could be to relax the budget constraint,
and permit the total investment to be optimized based on the value of the
system being protected. Third, repeated attacks evolving in time could be
investigated.

2.5 Game Theory and Robust Optimization

Combination of game theory and robust optimization techniques is a very
new research area. Aghassi and Bertsimas (2004) consider robustness in one-
shot general-sum n-person games in [1]. In this interesting paper, authors
assume that payoffs to players belong to bounded uncertainty sets and adopt
a robust optimization approach. Methods in this paper are the closest to the
ones presented in this report, although the two approaches differ significantly.

Hayashi et al. (2004) consider a bimatrix game in which the players can
neither evaluate their cost functions exactly nor estimate their opponents’
strategies accurately. Note that this is the case in many applications in
homeland security research. To formulate such a game, authors introduce
the concept of robust Nash equilibrium and prove its existence under some
mild conditions. Moreover, authors show that a robust Nash equilibrium
in the bimatrix game can be characterized as a solution of a second-order
cone problem (SOCP). Some numerical results are presented to illustrate
the behavior of robust Nash equilibria. Although Hayashi et al. (2004)
considered robustness in a bimatrix game, combining robust optimization
techniques with game theory is open to many future research areas. First of
all, differential or dynamic games with uncertainty could be worthwhile to
study through robust optimization techniques. Furthermore, as the authors
indicate, the concept of robust Nash equilibrium could be extended to the
general N-person game. For the 2-person bimatrix game studied in this
paper, it is sufficient to consider the uncertainty in the cost matrices and the
opponent’s strategy.

To discuss general N-person games, a more complicated structure should
be dealt with. Another issue is to find other sufficient conditions for the
existence of robust Nash equilibria. Also, theoretical study on the relation
between Nash equilibrium and the robust Nash equilibrium is worthwhile.
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For example, it is not known whether the uniqueness of Nash equilibrium
is inherited to robust Nash equilibrium. In this paper, authors have formu-
lated several robust Nash equilibrium problems as SOCPs. However, they
have only considered the cases where either the cost matrices or the oppo-
nent’s strategy is uncertain for each player. According to the authors, it
seems interesting to study the case where both of them are uncertain, or
the uncertainty set is more complicated. In numerical experiments, authors
employed an existing algorithm for solving SOCPs. But, there is room for
improvement of solution methods. It may be useful to develop a specialized
method for solving robust Nash equilibrium problems.

2.6 Stochastic Games

As mentioned in the introduction, unlike naturally occurring or accidental
events, terrorism is essentially adversarial. Therefore, investments designed
to protect against one type of terrorism (e.g., against blasts, biological agents,
or radiological devices) have the potential to elevate the risk of other types
of terrorism over a given time period. An approach that accounts for such
an evolution over time could be adopted by using stochastic games. There is
an extensive amount of research in stochastic games in various fields such as
economics, mathematics and operations research since the 1950s. The basic
two person zero sum (discrete) stochastic game is played as follows. There are
states, and strategy sets for each player and for all states. The system evolves
in stages represented by discrete time points. At each state, the system is in
one of its states and players 1 and 2 choose their respective actions. There
is an immediate payoff as a consequence of the choices of the players. Then,
the system moves into another state with some probability determined by
the previous state, and by the choices of the players in the previous state.
The fundamental question is then to find the optimal strategies that could be
adopted by the players that optimize their own (noncooperative) objectives.
Shapley (1953) first introduced stochastic games and proved that the value
and optimal strategies of the game exist. Many extensions to this basic model
have been proposed after this seminal paper such as games with infinite states
and actions, N person games, games with incomplete information, continuous
time games, and semi-Markov games among countless others.

Since publications on stochastic games are usually in the form of research
papers and monographs, Filar and Vrieze (1997) devote a single textbook to
the topic. The authors study discrete time finite state finite action stochas-
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tic games with complete information from the Markov decision processes and
mathematical programming points of views, where there are more than one
decision makers with conflicting objectives, and use the name Competitive
Markov Decision Processes. The authors treat discounted stochastic games,
their relation with linear programming and nonlinear programming formula-
tions, and the existence of stationary strategies and equilibria in depth. An
important result is that the class of nonstationary strategies cannot achieve
a better equilibrium value than the class of stationary strategies. Another
observation is that, unlike Markov decision processes problems, general two
person zero sum stochastic games cannot be solved by linear programming
(LP). However, certain restrictions could be imposed on them in order to
convert the problem into a suitable linear programming problem. Two of
these restrictions are as follows. First, single controller discounted games
lend themselves to LPs [43]. In this model, the system makes a transition
into the next state with some probability according to the previous state and
the action taken by one of the decision makers in the previous state. Hence,
the action of the other player is irrelevant in determining the next state.
Second, separable-reward-state-independent-transition discounted stochastic
games could be converted to an LP. In this model, the payoff function can be
expressed by two components, where one component is dependent only on
the current state, and the other component is on the pair of choices made by
the decision makers. Also, the transition to the next state is determined only
by the pair of actions taken by the opponents and does not depend on the
current state of the system [44]. Advances in stochastic games throughout
the years could be viewed from two coupled perspectives: game theoretical
perspective, and the stochastic processes perspective.

An extension to stochastic game models mentioned above is the one
with incomplete information. The incomplete information case within the
repeated games is first introduced by Aumann and Maschler (1968). Sev-
eral authors have adopted the approach by Aumann and Maschler (1968) to
stochastic games. In a recent paper by Rosenberg, et al. (2004), authors
consider stochastic games with incomplete information for one of the play-
ers. However, the restriction in this model is that the transitions to the next
state are controlled by a single player. Another extension by same authors
concerns incomplete information on both sides. A two-player zero-sum sto-
chastic game with incomplete information is described by a finite collection
of stochastic games. It is assumed that the games differ only through their
payoffs but they all have the same sets of states and actions, and the same
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transition matrix. The game is played in stages. A stochastic game is to be
played out of the finite set of games over which a probability distribution is
specified. Player 1 is informed of the specific game to be played, while player
2 is not. All that the second player knows is that a game is to be chosen
randomly from the finite set of games and to be played thereafter. At every
stage, the two players choose their actions simultaneously and the system
moves into the next state. Both players are informed of their actions and the
current state of the system. Note that the actual payoff is not told to player
2 but is known by player 1.

It is important to note that the approach adopted by Rosenberg et al.
(2004) is based, in some sense, on the approach proposed by Harsanyi (1967,
1968). In his study that brings him the Nobel Prize in 1994, Harsanyi proved
that an incomplete two person zero sum normal form game (I-game) could
be converted into a set of complete information games (C-game) that is
equivalent to the original I game.

Types of extensions to stochastic games from the stochastic processes
perspective include considering nonhomogeneous games [19], continuous time
games [38], semi Markov games [30] among numerous others.

2.7 Other Approaches

Faria (2004) contends that terrorist innovations result from the innovation
effect that is triggered by counter-terrorist policies. To model this phenom-
enon, Faria creates a dynamic model of terrorist attacks and innovations.
The model consists of a set of differential equations, and is used to compare
the effectiveness of three different anti-terrorist policies: deterrence, preemp-
tion and intelligence. Hazen (2002) introduces stochastic trees, where chance
nodes in a decision tree can be stochastic nodes. This paper also uses stochas-
tic nodes in influence diagrams. By doing so, variables that change state over
time are captured in the influence diagram methodology. The authors apply
this new methodology to model medical decisions, and specifically, arthritic
joint replacement decisions. A possible extension to this methodology could
be considering the use of stochastic nodes in games in extensive forms.

2.8 Contributions

Before presenting the contributions of this report, we note some gaps present
in the literature.
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From an application perspective, multi-stage game theoretical approaches
are mentioned by numerous authors as future research directions in the appli-
cation of game theory to adversarial decision making. Uncertainty inherent
in the homeland security applications of game theory and related topics has
received very little attention, let alone methods to cope with uncertainty.
Robustness of the existing models received very little attention and has been
mentioned in several occasions as future research directions. Finally, robust-
ness in a multi-stage stochastic game theoretical setting does not exist.

From a methodological point of view, unlike one-shot games, incomplete
information in stochastic games seems to be a fairly new research area in
operations research. Very little exists in the literature regarding incomplete
information stochastic games. Single controller stochastic games with incom-
plete information is presented in [48]. Here, authors interpret the incomplete
information as partial information on the payoff matrix for one player. Hence,
the other player knows the exact payoff matrix. In the future directions sec-
tion of this paper, authors consider the case where each of the players has
partial information on the payoff matrix. The incomplete information scheme
in this paper extends the ideas in [3] to stochastic games. Hence, there is
some probability distribution associated with the unknown payoff matrix to
a player. Stochastic games with incomplete information on one side that
have a single non-absorbing state have been studied in [55] and [56].

The key contributions of this report, both from an application and theo-
retical perspective, are as follows.

1. We present a new approach that accounts for robustness in homeland
security decisions with emphasis on uncertainties inherent in the prob-
lem domain. Uncertain antagonistic nature of the problem is also ad-
dressed in our approach. We extend stochastic games into an incom-
plete information setting, where we interpret incomplete information
as the unknown data of the game for each player that belong to a given
uncertainty set.

2. We propose to cope with uncertainty in two ways: First, we consider
that the adaptive behavior of the opponent is uncertain at a given stage.
That is, our new approach takes into account the uncertainty present
in possible conversions from one threat category to the other that are
due to alternative selections of the adversaries in a given stage. Second,
we treat payoffs to the adversaries as unknown parameters that belong
to a bounded set.
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3. The robust approach we adopt in this report not only focuses on future
perturbations in problem parameters in a given time period, i.e., in
payoffs and transition probabilities at a given current time period, but
also on perturbations in data associated with threats likely to arise in
future time periods.

4. Under suitable interpretations and assumptions, our new methodology
readily lends itself to calculation of risk of a given threat category, even
though there are uncertainties associated with payoffs to each player
and with transition probabilities.

5. We propose a distribution free model for stochastic games with incom-
plete information on both sides, and on both payoffs and transition
probabilities. This model presents an alternative approach to [48] and
extends the ideas in [1] to stochastic games. In particular, in section 4,
we prove the existence of equilibrium in general-sum n-person robust
stochastic games that lends itself to a formulation of an equilibrium
point via robust optimization. In section 5, we extend the ideas pre-
sented in [16] to their robust counterparts, inspired by the existing
literature in robust optimization.

6. Our approach extends the ideas in certain parts of [13]. Specifically,
we extend robust Markov decision processes with uncertain transition
probabilities to the competitive case where there are more than one
players. When there is only one player in the set of players, techniques
of this report result in robust Markov decision processes with uncertain
parameters that belong to bounded, closed, and convex sets. Further-
more, as mentioned earlier, we consider uncertainty in both transition
probabilities and payoffs.

3 Methodology

As presented in section 1, the two important aspects of our problem are
uncertainty and adversarial intentions. Moreover, uncertainty is not only
associated with the cost / benefit parameters but also with the adversarial
character of the opponents. That is, we also face the problem of uncertain ad-
versarial behaviors of the opponent. In this sense, our problem intuitively is
an optimization problem, where we wish to determine best strategies to adopt
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against an opponent. Besides being adversarial, we face antagonistic inten-
tions that cannot be captured using methods such as influence diagrams or
decision trees. Moreover, the question these methods address are fundamen-
tally related to determining optimal decisions against nature, which clearly
is not antagonistic. In addition, such methods are suitable to determine pure
actions. However, it is very likely for a decision maker to consider not only
pure but also mixed strategies that are presented in the sequel.

As also presented in section 1, stochastic games readily lend themselves
to modeling adversarial decision processes. They not only could be used to
model adversarial behavior, but also to capture antagonistic intentions. As
will be discussed in subsequent sections, risks of different threat categories
could be obtained using this methodology. Nevertheless, stochastic games
by themselves are still not sufficient for our purposes due to the crucial un-
certainty aspect of our problem. For the reasons outlined in section 1, we
clearly need a more realistic approach to cope with the requirements of our
problem.

In this section, we introduce a novel approach, robust stochastic games.
To this end, stochastic games with finite state and action sets are briefly
introduced.

3.1 Stochastic Games

This section reviews basics of stochastic game theory, as presented in [54]
and [17]. In stochastic games, the play proceeds from one state to the other
according to transition probabilities controlled jointly by two or more players.
It consists of states and actions associated with each player. Once the game
starts in a state, each player chooses their respective actions. The play then
moves into the next state with some probability and continues from thereon.
The probability that the game moves into the next state is determined by
the current state and the actions chosen in the current state.

Let the set of states S = {1, ...,M} and the set of players I = {1, ..., N}
be finite. If the play is in state s, player i can choose the action ai

s ∈ Ai
s,

where Ai
s is the set of actions of player i in state s. Suppose that each player

makes a choice in state s, i.e., we have as = (a1
s, ..., a

i
s, ..., a

N
s ). Then the

game moves into state k with probability Psask ≥ 0,
∑M

k=1 Psask = 1.
In the most general sense, stochastic games could be seen as a sequence

of one-shot non-zero sum n person games. Values of the one-shot games
to players are accumulated in the process. Value of a stochastic game for
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player i starting the game in state s is defined as the total value to player
i accumulated throughout the process if player i starts the game in state s.
In discounted stochastic games player i discounts the values of the one-shot
games to be played in the future by a factor βi, 0 ≤ βi < 1.

At each stage, players may consider using mixed strategies. Let xi
s be the

probability distribution over the set Ai
s with cardinality mi

s. In other words,
the probability vector for player i in state s is xi

s = (xi
s,1, ..., x

i
s,mi

s
), where

xi
s,k ≥ 0,

∑mi
s

k=1 x
i
s,k = 1. If we denote the set of mixed strategies of player i

in state s by X i
s, then X i

s is a polytope given by

X i
s = {xi

s ∈ <
mi

s
+ |

mi
s∑

k=1

xi
s,k = 1}.

In this proposal, we consider a certain class of strategies as introduced by
Shapley (1953), namely, stationary strategies. Stationary strategies prescribe
a player the same probabilities for his choices each time the player visits a
certain state, no matter what route she follows to reach that state. Let
us represent the stationary strategies of a player i by xi = (xi

1, ..., x
i
M) and

denote the set of mixed strategies of all players in the state space of the game
by x = (x1, ..., xN). We denote mixed strategies of all players for all states
except for player i by

x−i = (x1, ..., xi−1, xi+1, ..., xN).

The following notation is used to distinguish a mixed strategy of player i
from those of others, for all states, and for a specific state s, respectively, as
follows.

(x−i, ui) = (x1, ..., xi−1, ui, xi+1, ..., xN).

Finally, we use the following notation.

X i =
∏
s∈S

X i
s , Xs =

∏
i∈I

X i
s , and X =

∏
i∈I

X i.

Suppose that players play with mixed strategies. Then a probability is
associated with each realization of as ∈ As, where As =

∏N
i=1A

i
s. Suppose

that players choose their actions secretly (independently) at a given state.
Then the probability associated with as is

N∏
m=1
m6=i

xm
s,am

s
ui

s,ai
s
.

25

DRAFT



Then, expected cost to player i starting in state s is given, ∀s ∈ S, i ∈ I, by

gi
s(x

−i
s , u

i
s; v

i) =
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
ui

s,ai
s
{Ci

sas
+ βi

M∑
k=1

Psaskv
i
k}, (1)

where Ci
sas

is the immediate cost to player i induced by as in state s and
vi

k is the value to player i if the next state is k. We interpret vi
k as a cost

incurred to player i in state k. As it is seen in the above equation, expected
cost to player i is composed of his immediate expected cost in state s and
expected total values of the games to be played in future stages. In this
model, given the strategies of all other players in state s,i.e. x−i

s , player i
wishes to minimize his expected cost in s. This minimization, in turn, yields
his value of the stochastic game starting in s. Hence, we obtain the following
well known condition that the value vector for player i, i.e. vi = (vi

1, ..., v
i
M),

must satisfy, if it exists.

vi
s = min

ui
s∈Xi

s

∑
as∈As

N∏
m=1
m6=i

xm
s,am

s
ui

s,ai
s
{Ci

sas
+ βi

M∑
k=1

Psaskv
i
k}, ∀s ∈ S, i ∈ I. (2)

It is in fact another result that, for any x = (x1, ..., xN) ∈ X, there exists
a unique corresponding value vi

s, ∀i ∈ I, ∀s ∈ S. We are now ready for the
following definition.

Definition. A tuple of strategies x = (x1, ..., xN) ∈ X is a Nash
equilibrium point in a stochastic game if and only if, ∀i ∈ I and ∀s ∈ S,

vi
s(x

1, ..., xN) ≤ vi
s(x

−i, ui),∀ui ∈ X i. (3)

When the above conditions hold, the value vi
s is called the optimal value of

the game to player i starting in state s and xi is called the optimal stationary
strategies for i. When (3) holds, we see that player i’s strategy xi is a
best answer against all other players’ strategies x−i, for all i ∈ I. Hence
neither of the players has an incentive for a deviation from their respective
strategies. In other words, once the equilibrium is reached, neither of the
players individually wants to deviate from it.

It is now a very well known result that optimal values in stochastic games
exist. This result was first found by Shapley (1953) for two-person zero-sum
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stochastic games and later on was extended to the general-sum n player
stochastic games by Fink (1964).

Equation (2) is a fundamental condition. It states that if a player knew
how to play optimally from the next stage on, then, at the current stage, he
would play with such strategies so that he minimizes the expected immediate
cost at the current stage and also minimizes the expected costs possibly
incurred in future stages. Hence, player i is not only concerned with the
immediate outcome of his actions but also with the future consequences of
his strategies in the current stage.

We next state an equivalent equilibrium definition for the purposes of
developments in the sequel.

Definition. A point x ∈ X is a Nash equilibrium in a stochastic game
if and only if, ∀i ∈ I and ∀s ∈ S, ∃(x−i, ui) and v = (v1, ..., vN), such that,

vi
s = min

ui
s∈Xi

s

gi
s(x

−i
s , u

i
s; v

i), (4)

and
xi

s ∈ argminui
s∈Xi

s
gi

s(x
−i
s , u

i
s; v

i). (5)

This definition states that x−i
s is an optimal (stationary) strategy for

player i in state s if, when Equation (4) is satisfied, the corresponding mini-
mizer of the objective function of player i is a strategy that he always wishes
to use against all other players’ strategies when in state s. If this statement
holds for all players and all states, then no player would wish to deviate from
their strategies, resulting in an equilibrium. Player i starting in state s can
use an arbitrary strategy and obtain Equation (4) and a corresponding value
but, in return, other players may change their strategies that forces player i
to establish equation (4) again. We look for such strategies, the use of which
always makes all players reluctant to deviate from those strategies.

3.2 Robust Optimization

This section briefly reviews the basics of robust optimization, as introduced
in [5]. Consider the following optimization problem, Pγ [5].

Pγ : min
x∈<n

f(x, γ)

s.t. F (x, γ) ∈ K ⊂ <m,
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where γ ∈ <M is the data vector, x ∈ <n is the decision vector, and K is a
convex cone.

Suppose that

• the data of Pγ is uncertain and all that is known about the data is that
it belongs to an uncertainty set U ∈ <M

• the constraints F (x, γ) ∈ K must be satisfied no matter what the actual
realization of γ ∈ U is.

Now, consider the problem P = {Pγ}γ∈U . An optimal solution to the
uncertain problem P is defined as a solution that must give the best possible
guaranteed value under all possible realizations of constraints. Formally, it
should be an optimal solution of the following program:

PR : min
x∈<n

{sup
γ∈U

f(x, γ) s.t. F (x, γ) ∈ K, ∀γ ∈ U}.

Problem PR is called the robust counterpart of P , and its feasible and
optimal solutions are called robust feasible and robust optimal solutions,
respectively [5].

Optimization of a linear program with column-wise uncertainty in the
constraint matrix is first studied in [57]. Soyster’s model is equivalent to an
LP where all uncertain parameters are fixed to their corresponding worst case
values, resulting in an over conservative approach. Ben-Tal and Nemirovski
(1998) examine ellipsoidal uncertainty sets that relax the over conservative
approach of Soyster’s and they show that the robust counterpart of an LP
with an ellipsoidal uncertainty set is a second order conic program. Ne-
mirovski explains in [42] that robust counterpart of an optimization problem
is not restricted to LPs. Furthermore, Ghaoui et al. (1998) consider semi-
definite programs (SDPs) whose data belong to some uncertain set.

3.3 Formulation of Robust Stochastic Games

Starting in this section, we introduce our new approach. The rest of this
proposal presents a new methodology and does not exist in the literature.

We have assumed so far in this proposal that costs to players and the
transition probabilities of the game are known with certainty. However, this
is usually not the case in practical applications. In fact, it is quite reasonable
to consider that neither of the players knows exact costs incurred and/or
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the transition probabilities to other states. Hence, it is natural to consider
uncertainty sets associated with both the cost terms and the transition prob-
abilities. Let us denote the uncertain cost coefficients and the uncertain
transition probabilities for player i in state s by C̃i

sas
and P̃sask, respectively.

We assume that the uncertainty set for immediate payoffs is bounded. That
is,

C̃i
sas

∈ Ci
sas
,∀i ∈ I and s ∈ S,

where Ci
sas

is bounded for every player and state. Furthermore,

P̃sask ∈ Psask,∀i ∈ I and s ∈ S,

where P̃sask is a closed interval in [0, 1], and
∑

k∈S P̃sask = 1. We seek whether
an equilibrium point and optimal values exist in the case when probability
transitions and the immediate costs at any state of the game are not known
but it is known that they belong to their respective uncertainty sets. In
other words, we are interested in whether a robust equilibrium point and
corresponding robust optimal values exist. By a robust equilibrium point, we
mean that optimal stationary strategies remain optimal as transition prob-
abilities and immediate costs vary in their respective uncertainty sets. The
proofs in this section parallel the ones in [17] to some extent, and establish
the existence of an equilibrium point of a robust stochastic game where uncer-
tainty sets are as given above. Note that results of the following proofs hold
when the uncertainty set for probabilities belong to a set that is intersected
by the probability simplex.

Now, in light of the results summarized in the previous section, we should
notice the following observation. In our new robust stochastic game model,
if robust values for player i exist, given x−i, at optimality, they must satisfy
the following, where the inner maximization problem is with respect to the
uncertain transition probabilities and uncertain immediate costs.

ωi
s = min

ui
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

∑
as∈As

N∏
m=1
m6=i

xm
s,am

s
ui

s,ai
s
{C̃ i

sas
+ βi

M∑
k=1

P̃saskω
i
k}. (6)

The above equation states that if a player knew how to play in the ro-
bust stochastic game optimally from the next stage on, then, at the current
stage, he would play with such strategies so that he minimizes the maxi-
mum expected immediate cost at the current stage and also minimizes the
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maximum expected costs possibly incurred in future stages. Hence, player i is
not only concerned with the immediate outcome of his actions but also with
the future consequences of his strategies in the current stage. Note that we
could have modeled each player as wishing to minimize his expected maxi-
mum total cost. However, this approach would be much more conservative
than our model since in this case, each uncertain parameter would attain
worst-case values in their respective uncertainty sets regardless of the mixed
strategies chosen by players. In our robust stochastic game model, uncer-
tain parameters attain their respective worst-case values with respect to the
mixed strategies.

To ease the notation, let us define

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i) =

∑
as∈As

N∏
m=1
m6=i

xm
s,am

s
ui

s,ai
s
{C̃ i

sas
+ βi

M∑
k=1

P̃saskω
i
k}.

Equation (6) now reads as follows.

ωi
s = min

ui
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i). (7)

We will in fact show that such robust values exist.
Now, we are ready to state our definition of equilibrium in robust sto-

chastic games.
Definition.
A point x ∈ X is a robust Nash equilibrium point in a robust stochastic

game if and only if, ∀i ∈ I and s ∈ S, ∃(x−i, ui) and ω = (ω1, ..., ωN), such
that,

ωi
s = min

ui
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i)

and
xi

s ∈ argminui
s∈Xi

s
max

C̃
i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i).
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Equivalent to the above definition, a tuple of strategies x = (x1, ..., xN) ∈
X is a robust Nash equilibrium point in a robust stochastic game if and only
if, ∀i ∈ I and ∀s ∈ S,

wi
s(x

1, ..., xN) ≤ wi
s(x

−i, ui),∀ui ∈ X i. (8)

The following is obvious.

Proposition 1
In robust stochastic games, the following must hold, where vi

s(x
1, ..., xN) is

the value of the nominal stochastic game to player i in state s.

wi
s(x

1, ..., xN) ≥ vi
s(x

1, ..., xN), ∀i ∈ I, s ∈ S (9)

Proposition 1 states that the robust optimal value to player i in a robust
stochastic game is always greater than or equal to the optimal value to player
i in the respective nominal stochastic game, where data defining the game is
known exactly. Inequality (9) must hold since in the robust approach, player i
optimizes his objective function against the worst possible data scenario with
respect to his mixed strategies. Conversely, in the nominal game with exact
data, player i optimizes his objective function with respect to the nominal
data values.

4 Existence of Equilibrium Points in

Robust Stochastic Games

Our proof of existence of equilibrium points in a robust stochastic game
parallels Fink’s (1964). However, a different correspondence is defined that
takes into account the robustness. Our correspondence uses a maximum ex-
pected total cost function with respect to mixed strategies. We show that
the fixed point of a suitably constructed correspondence is an equilibrium
point. Before this final step, an existing result and a definition, Kakutani’s
fixed point theorem and the definition of upper-semicontinuity for correspon-
dences are stated. Then, a function pertaining to player i that returns the
minimum cost to player i given the strategies of all other players is defined.
It is shown that the function we use for robustness is a contracting function
and therefore has a unique fixed point, which is the robust value (cost) of
the game to player i. Next, it is shown that the robust value to a player
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is bounded. Finally, it is shown that a suitably constructed correspondence
satisfies the hypotheses of Kakutani’s fixed point theorem. The following
proofs require basic background on point to set mappings (correspondences)
and contraction mappings.

Definition.
A correspondence φ that maps a closed, bounded, and convex set S into

the family of closed, convex subsets of S is upper semi-continuous if

yn ∈ φ(xn), n = 1, 2, 3, ...

lim
n→∞

xn = x

lim
n→∞

yn = y

imply that y ∈ φ(x).

Theorem 1 (Kakutani’s Fixed Point Theorem). If S is a closed, bounded,
and convex set in a Euclidean space, and φ is an upper semi-continuous
correspondence mapping S into the family of closed, convex subsets of S,
then ∃ x ∈ S, s.t. x ∈ φ(x).

Let W i ≡ {ωi
s ∈ <}s∈S, W ≡ {W i}i∈I . Note that W is complete. Define

the metric on W , ρ(ω, θ) = maxi∈I,s∈S |ωi
s − θi

s|.
Next, a transformation is defined. Given the strategies of all other players

and an arbitrary robust value vector for player i, this transformation mini-
mizes the maximum expected total cost with respect to the mixed strategies
for player i. As a result of Theorem 2 below, it is justified that such a robust
value vector exists for any given x−i.

Theorem 2 Let γi
s,x−i

s
: W i → < be defined by

γi
s,x−i

s
(ωi) = min

ui
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i).

For x ∈ X, define γx(ω) : W → W by (γx(ω))is = γi
s,x−i

s
(ωi). γx(ω) is a

contraction mapping.
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Proof. Let ω, θ ∈ W , β = maxi∈I βi. For x−i
s fixed, ∀i ∈ I, s ∈ S,

γi
s,x−i

s
(ωi) = min

ui
s∈Xi

s

max
C̃

i
sas

∈Ci
sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i)

= ψi
s(C

∗i
sas

(x−i
s , u

∗
s
i), P ∗i

sask(x
−i
s , u

∗
s
i);x−i

s , u
∗
s
i;ωi),

where u∗s
i is the minimizer, and

C∗i
sas

(x−i
s , u

∗
s
i) ∈ Ci

sas
and P ∗i

sask(x
−i
s , u

∗
s
i) ∈ Psask

are the optimizers that now depend on (x−i
s , u

∗
s
i). Similarly, with z∗s

i being
the minimizer, and for some

C
′i
sas

(x−i
s , z

∗
s
i) ∈ Ci

sas
, P

′i
sask(x

−i
s , z

∗
s
i) ∈ Psask,

we have

γi
s,x−i

s
(θi

s) = min
zi
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , z

i
s; θ

i)

= ψi
s(C

′i
sas

(x−i
s , z

∗
s
i), P

′i
sask(x

−i
s , z

∗
s
i);x−i

s , z
∗i
s ; θi).

Note that

γi
s,x−i

s
(ωi

s) ≤ ψi
s(C

′i
sas

(x−i
s , z

∗
s
i), P

′i
sask(x

−i
s , z

∗
s
i);x−i

s , z
∗i
s;ω

i)

and
γi

s,x−i
s

(θi
s) ≤ ψi

s(C
∗i
sas

(x−i
s , u

∗
s
i), P ∗i

sask(x
−i
s , u

∗
s
i);x−i

s , u
∗i
s; θ

i).

Therefore,
γi

s,x−i
s

(ωi
s)− γi

s,x−i
s

(θi
s)

= ψi
s(C

∗i
sas

(x−i
s , u

∗
s
i), P ∗i

sask(x
−i
s , u

∗
s
i);x−i

s , u
∗
s
i;ωi)

−ψi
s(C

′i
sas

(x−i
s , z

∗
s
i), P

′i
sask(x

−i
s , z

∗
s
i);x−i

s , z
∗i
s ; θi)

≤ ψi
s(C

′i
sas

(x−i
s , z

∗
s
i), P

′i
sask(x

−i
s , z

∗
s
i);x−i

s , z
∗i
s;ω

i)

−ψi
s(C

′i
sas

(x−i
s , z

∗
s
i), P

′i
sask(x

−i
s , z

∗
s
i);x−i

s , z
∗i
s ; θi)

=
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
z∗is{C

′i
sas

(x−i
s , z

∗
s
i) + βi

M∑
k=1

P
′i
sask(x

−i
s , z

∗
s
i)ωi

k}
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−
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
z∗is{C

′i
sas

(x−i
s , z

∗
s
i) + βi

M∑
k=1

P
′i
sask(x

−i
s , z

∗
s
i)θi

k}

=
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
z∗isβi{

M∑
k=1

P
′i
sask(x

−i
s , z

∗
s
i)(ωi

k − θi
k)}

≤
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
z∗isβ(

M∑
k=1

P
′i
sask(x

−i
s , z

∗
s
i))ρ(ω, θ) = βρ(ω, θ).

Similar to the above arguments, for x−i
s fixed, ∀i ∈ I, s ∈ S,

γi
s,x−i

s
(θi

s)− γi
s,x−i

s
(ωi

s)

= ψi
s(C

′i
sas

(x−i
s , z

∗
s
i), P

′i
sask(x

−i
s , z

∗
s
i);x−i

s , z
∗i
s ; θi)

−ψi
s(C

∗i
sas

(x−i
s , u

∗
s
i), P ∗i

sask(x
−i
s , u

∗
s
i);x−i

s , u
∗
s
i;ωi)

≤ ψi
s(C

∗i
sas

(x−i
s , u

∗
s
i), P ∗i

sask(x
−i
s , u

∗
s
i);x−i

s , u
∗i
s ; θi)

−ψi
s(C

∗i
sas

(x−i
s , u

∗
s
i), P ∗i

sask(x
−i
s , u

∗
s
i);x−i

s , u
∗
s
i;ωi)

≤ βρ(ω, θ).

Thus,
ρ(γx(ω), γx(θ)) ≤ βρ(ω, θ).

2

The following theorem is an application of a well known result in fixed
point theory to robust stochastic games (See [32]).

Theorem 3 Application of Banach’s Contraction Mapping Prin-
ciple. Let w(x) be the robust value vector corresponding to a stationary
strategy x ∈ X. Then, for any x ∈ X,

(a)

ωi
s(x) = min

xi
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;xs;ω

i(x)).

(b) ω(x) is bounded.
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Proof. By Banach’s contraction mapping principle γx(ω) has a unique fixed
point, ωx. That is, ∃wx such that γx(ωx) = ωx, which means

ωi
s(x) = min

ui
s∈Xi

s

max
C̃

i
sas

∈Ci
sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i).

Hence, the first part of the Theorem follows immediately.
For the second part, let the n-fold γx(...γx(γx(ω))...) be denoted by

(γx)
n(ω) and ω0 be an arbitrary initial value vector of the robust stochastic

game. Define the sequence ωn+1 = γx(ωn). Again by Banach’s principle,

lim
n→∞

(γx)
n(ω0) = lim

n→∞
ωn = ωx. (10)

Since γx is a conraction mapping, we have by Theorem 2 that

ρ(wm, wm−1 ≤ βρ(wm−1, wm−2) ≤ ... ≤ βm−1ρ(w1, w0).

Hence, using the triangle inequality gives

ρ(wm, w0) ≤ ρ(wm, wm−1) + ρ(wm−1, wm−2) + ...+ ρ(w1, w0)

≤ βm−1ρ(w1, w0) + βm−2ρ(w1, w0) + ...+ ρ(w1, w0)

= (βm−1 + βm−2 + ...+ 1)ρ(w1, w0) ≤
1

1− β
ρ(w1, w0),

therefore,

lim
m→∞

ρ(wm, w0) = ρ(wx, w0) ≤
1

1− β
ρ(w1, w0).

Take w0 = 0. Then,

ρ(wx, w0) ≤
1

1− β
max

i∈I,s∈S
|γi

s,x−i
s

(0)|

= max
i∈I,s∈S

| min
xi

s∈Xi
s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

∑
as∈As

N∏
m=1
m6=i

xm
s,am

s
ui

s,ai
s
C̃

i

sas
|

= max
i∈I,s∈S

|
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
x∗is,ai

s
C

∗i
sas

(x−i, x∗i)|,
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where x∗i is the optimum, and

≤ max
i∈I,s∈S

∑
as∈As

N∏
m=1
m6=i

xm
s,am

s
x∗is,ai

s
{max

as∈As

{ sup
C̃i

sas
∈C̃i

sas

|C̃ i

sas
|}}

= max
i∈I,s∈S

1{max
as∈As

{ sup
C̃i

sas
∈Ci

sas

|C̃ i

sas
|}}

= max
i∈I,s∈S
as∈As

sup
C̃i

sas∈Ci
sas

|C̃ i

sas
|,

which is bounded since C
i

sas
is bounded. Thus, ω(x) is bounded for any

x ∈ X.
2

The above theorem is a very strong result. It first states that there exists
a unique robust value ωi

s such that when it is given to the transformation
γi

s,x−i
s

(.) as an argument for any fixed x−i
s , the output of the transformation

coincides with the robust value ωi
s given as an argument to the transforma-

tion. Formally, ∀x−i ∈ X−i =
∏N

k=1,k 6=iX
k and given any arbitrary robust

value vector w, minimizing player i’s maximum expected total cost for each
state yields back the same value vector w. Second, it states that if, for
any fixed x−i

s , we apply the above transformation starting with an arbitrary
robust value ωi

s(0) over and over again, outputs of these transformations
converge to the unique fixed point of the transformation.

Let us now recall the vector function ψi
s(C̃

i

sas
, P̃sask;xs, ω

i) defined previ-
ously as

ψi
s(C̃

i

sas
, P̃sask;xs, ω

i) =
∑

as∈As

N∏
m=1

xm
s,am

s
{C̃ i

sas
+ βi

M∑
k=1

P̃saskω
i
k}.

We need the following lemma to show that the maximum expected cost
functions we use satisfy the properties needed to use Kakutani’s theorem. A
portion of the proof of the following lemma makes use of an algebraic identity
used in [1].

Lemma 1 Let p = (xs, w
i), q = (us, w

i). Define the metrics

dXs(xs, us) = maxi∈I |xi
s − ui

s|, dW i(wi, θi) = maxs∈S|wi
s − θi

s|,
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and
d1(p, q) = dXs(xs, us) + dW i(wi, θi).

Given ε > 0, ∃δ(ε) > 0 such that if for any p, q ∈ Xs ×<M ,

d1(p, q) < δ(ε),

then, ∀C̃i
sas

∈ Ci
sas

, ∀P̃sask ∈ Psask,∣∣∣ψi
s(C̃

i

sas
, P̃sask;xs, ω

i)− ψi
s(C̃

i

sas
, P̃sask;us, θ

i)
∣∣∣ < ε.

Proof. Since, C̃i
sas

∈ Ci
sas

and Ci
sas

is bounded ∀i ∈ I, s ∈ S, we have∣∣∣C̃i
sas

∣∣∣ ≤ K,

where 1 < K <∞.
Note that by Theorem 3, robust values are bounded. Hence, we have

∀i ∈ I, s ∈ S, that ∣∣ωi
s

∣∣ ≤ W,

where 1 < W <∞. Note that∣∣∣ψi
s(C̃

i

sas
, P̃sask;xs, ω

i)− ψi
s(C̃

i

sas
, P̃sask;us, θ

i)
∣∣∣

= |
∑

as∈As

N∏
m=1

xm
s,am

s
C̃

i

sas
+ βi

∑
as∈As

(
N∏

m=1

xm
s,am

s
)(

M∑
k=1

P̃saskω
i
k)

−
∑

as∈As

N∏
m=1

um
s,am

s
C̃

i

sas
− βi

∑
as∈As

(
N∏

m=1

um
s,am

s
)(

M∑
k=1

P̃saskθ
i
k)|

=

∣∣∣∣∣ ∑
as∈As

C̃
i

sas
(

N∏
m=1

xm
s,am

s
−

N∏
m=1

um
s,am

s
) + βi

∑
as∈As

M∑
k=1

P̃sask(
N∏

m=1

xm
s,am

s
ωi

k −
N∏

m=1

um
s,am

s
θi

k)

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
as∈As

C̃
i

sas
(

N∏
m=1

xm
s,am

s
−

N∏
m=1

um
s,am

s
)

∣∣∣∣∣+
∣∣∣∣∣βi

∑
as∈As

M∑
k=1

P̃sask(
N∏

m=1

xm
s,am

s
ωi

k −
N∏

m=1

um
s,am

s
θi

k)

∣∣∣∣∣
≤ K

∑
as∈As

∣∣∣∣∣
N∏

m=1

xm
s,am

s
−

N∏
m=1

um
s,am

s

∣∣∣∣∣ + βi

∑
as∈As

M∑
k=1

∣∣∣∣∣
N∏

m=1

xm
s,am

s
ωi

k −
N∏

m=1

um
s,am

s
θi

k

∣∣∣∣∣ .
(11)
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Let

δ1(ε) =
min{ε, 1}

3K(2N − 1)
∏N

i=1m
i
s

, δ2(ε) =
min{ε, 1}

3Mβi

∏N
i=1m

i
s

,

δ3(ε) =
min{ε, 1}

3WMβi(2N − 1)
∏N

i=1m
i
s

,

and let
δ(ε) = min{δ1(ε), δ2(ε), δ3(ε)}.

Now,
d1(p, q) < δ(ε)

implies that, ∀i ∈ I, s ∈ S, and ∀ai
s ∈ Ai

s,

xm
s,am

s
= um

s,am
s

+ αm
s,am

s
and ωi

s = θi
s + γi

s,

where
∣∣αm

s,am
s

∣∣ < δ(ε), and |γi
s| < δ(ε). Furthermore, as Aghassi and Bertsimas

(2004) show, we have the following algebraic identity.

∣∣∣∣∣
N∏

m=1

(um
s,am

s
+ αm

s,am
s
)−

N∏
m=1

um
s,am

s

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

I⊆1,...,N
|I|≥1

(
∏
m∈I

αm
s,am

s
)(

∏
m∈I′

um
s,am

s
)

∣∣∣∣∣∣∣∣ ,
where I ′ = {1, ..., N}\I. Note that∏

m∈I

∣∣αm
s,am

s

∣∣ < (γ1(ε))
|I| ≤ γ1(ε),

and that∣∣∣∣∣
N∏

m=1

(um
s,am

s
+ αm

s,am
s
)−

N∏
m=1

um
s,am

s

∣∣∣∣∣ ≤ ∑
I⊆1,...,N
|I|≥1

∣∣∣∣∣∏
m∈I

αm
s,am

s

∣∣∣∣∣
∣∣∣∣∣ ∏
m∈I′

um
s,am

s

∣∣∣∣∣ .
Hence, for the first term in (12),we have

K
∑

as∈As

∣∣∣∣∣
N∏

m=1

(um
s,am

s
+ αm

s,am
s
)−

N∏
m=1

um
s,am

s

∣∣∣∣∣
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≤ K
∑

as∈As

∑
I⊆1,...,N
|I|≥1

∣∣∣∣∣∏
m∈I

αm
s,am

s

∣∣∣∣∣
∣∣∣∣∣ ∏
m∈I′

um
s,am

s

∣∣∣∣∣
≤ K

∑
as∈As

∑
I⊆1,...,N
|I|≥1

∣∣∣∣∣∏
m∈I

αm
s,am

s

∣∣∣∣∣ < K
∑

as∈As

∑
I⊆1,...,N
|I|≥1

γ1(ε) =
ε

3
.

Now consider the second term in (12). We have

βi

∑
as∈As

M∑
k=1

∣∣∣∣∣
N∏

m=1

xm
s,am

s
ωi

k −
N∏

m=1

um
s,am

s
θi

k

∣∣∣∣∣
= βi

∑
as∈As

M∑
k=1

∣∣∣∣∣
N∏

m=1

(um
s,am

s
+ αm

s,am
s
)ωi

k −
N∏

m=1

um
s,am

s
θi

k

∣∣∣∣∣

= βi

∑
as∈As

M∑
k=1

∣∣∣∣∣∣∣∣
N∏

m=1

um
s,am

s
(ωi

k − θi
k) + ωi

k

∑
I⊆1,...,N
|I|≥1

∏
m∈I

αm
s,am

s

∏
m∈I′

um
s,am

s

∣∣∣∣∣∣∣∣
≤ βi

∑
as∈As

M∑
k=1

∣∣∣∣∣
N∏

m=1

um
s,am

s

∣∣∣∣∣ ∣∣(ωi
k − θi

k)
∣∣

+βiW
∑

as∈As

M∑
k=1

∑
I⊆1,...,N
|I|≥1

∣∣∣∣∣∏
m∈I

αm
s,am

s

∣∣∣∣∣
∣∣∣∣∣ ∏
m∈I′

um
s,am

s

∣∣∣∣∣
≤ βi

∑
as∈As

M∑
k=1

∣∣γi
s

∣∣ + βiW
∑

as∈As

M∑
k=1

∑
I⊆1,...,N
|I|≥1

∣∣∣∣∣∏
m∈I

αm
s,am

s

∣∣∣∣∣
< βi

∑
as∈As

M∑
k=1

δ2(ε) + βiW
∑

as∈As

M∑
k=1

∑
I⊆1,...,N
|I|≥1

δ3(ε)

=
ε

3
+
ε

3
= 2

ε

3
.
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Thus, ∣∣∣ψi
s(C̃

i

sas
, P̃sask;xs, ω

i)− ψi
s(C̃

i

sas
, P̃sask;us, θ

i)
∣∣∣

≤ K
∑

as∈As

∣∣∣∣∣
N∏

m=1

xm
s,am

s
−

N∏
m=1

um
s,am

s

∣∣∣∣∣ + βi

∑
as∈As

M∑
k=1

∣∣∣∣∣
N∏

m=1

xm
s,am

s
ωi

k −
N∏

m=1

um
s,am

s
θi

k

∣∣∣∣∣
<
ε

3
+ 2

ε

3
= ε.

2

Let the vector function f(x−i
s , u

i
s;ω

i) be defined as follows.

f(x−i
s , u

i
s;ω

i) = max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i).

Lemma 2 By Lemma 1, it immediately follows that f(x−i
s , u

i
s;ω

i) is contin-
uous ∀i ∈ I, and s ∈ S.

Lemma 3 f(x−i
s , u

i
s;ω

i) is convex in ui
s for fixed x−i

s and ωi.

Proof. Suppose that yi
s, z

i
s ∈ X i

s. Note that, ∀λ ∈ [0, 1],

f(x−i
s , (λy

i
s + (1− λ)zi

s);ω
i)

=
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
(λyi

s + (1− λ)zi
s)

×{C∗i
sas

(x−i
s , λy

i
s + (1− λ)zi

s) + β
M∑

k=1

P ∗
sask(x

−i
s , λy

i
s + (1− λ)zi

s)w
i},

where optimizers C∗i
sas

and P ∗
sask now depend on (x−i

s , λy
i
s +(1−λ)zi

s). Hence,

f(x−i
s , (λy

i
s + (1− λ)zi

s);ω
i)

= λ
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
yi

s,ai
s
{C∗i

sas
(x−i

s , λy
i
s+(1−λ)zi

s)+β
M∑

k=1

P ∗
sask(x

−i
s , λy

i
s+(1−λ)zi

s)w
i}

+(1−λ)
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
zi

s,ai
s
{C∗i

sas
(x−i

s , λy
i
s+(1−λ)zi

s)+β
M∑

k=1

P ∗
sask(x

−i
s , λy

i
s+(1−λ)zi

s)w
i}
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≤ λ
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
yi

s,ai
s
{C∗i

sas
(x−i

s , y
i
s) + β

M∑
k=1

P ∗
sask(x

−i
s , y

i
s)w

i}

+(1− λ)
∑

as∈As

N∏
m=1
m6=i

xm
s,am

s
zi

s,ai
s
{C∗i

sas
(xm

s , z
i
s) + β

M∑
k=1

P ∗
sask(x

m
s , z

i
s)w

i}

= λf(x−i
s , y

i
s;ω

i) + (1− λ)f(x−i
s , z

i
s;ω

i).

2

Next we define a function for player i that returns the fixed point of γi
s,x−i

s

given the strategies of all other players except i.
Define

βi(x−i) = {ωi = (ωi
1, ..., ω

i
M)|

ωi
s = min

ui
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i), s = 1, ...,M},

and denote the sth element of βi(x−i) by βi
s(x

−i). By earlier results stating
that the value of a robust stochastic game is bounded, we obtain by definition
that βi

s(x
−i) is bounded ∀i ∈ I, ∀s ∈ S,∀x−i ∈ X−i.

Lemma 4 If xi,nk
s → xi

s and βi
s(x

−i,nk) → ωi
s, then the robust value ωi

s is a
fixed point of γi

s,x−i
s

,i.e., βi
s(x

−i) = ωi
s.

Theorem 4 (Existence of Equilibrium in Robust Stochastic Games)
Suppose that uncertain transition probabilities and payoffs in a robust

stochastic game belong to closed, convex, and bounded sets and that the set
of actions and players, who use stationary strategies, are finite. Then, an
equilibrium point of this robust stochastic game exists.

Proof. We now apply Kakutani’s fixed point theorem. To this end, let

Y i = {yi = (yi
1, ..., y

i
M) ∈

M∏
s=1

X i
s

such that

yi
s ∈ argminui

s∈Xi
s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i),
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and

ωi
s = min

ui
s∈Xi

s

max
C̃

i
sas

∈Ci
sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i), s = 1, ...,M}.

Define the correspondence φ(x1, ..., xN)

= {(y1, ..., yN) ∈
N∏

i=1

X i | yi ∈ Y i, i = 1, ..., N}.

Now, we show that φ(x1, ..., xN) 6= ∅. Note that, by Theorem 3, ∀i ∈ I,
∀s ∈ S, and for any fixed x−i

s , there exist unique robust values ωi
s that

satisfies

ωi
s = min

ui
s∈Xi

s

max
C̃

i
sas∈Ci

sas

P̃sask∈Psask

ψi
s(C̃

i

sas
, P̃sask;x

−i
s , u

i
s;ω

i).

Note furthermore that, by lemmas 2 and 3, f(x−i
s , u

i
s;ω

i) is convex in
ui

s and continuous. By Bolzano-Weierstrass theorem that states that a con-

tinuous function on a non-empty compact set such as X i
s ⊂ <mi

s
+ achieves

a minimum in X i
s, we obtain that Y i 6= ∅. Therefore, the result that

φ(x1, ..., xN) 6= ∅ follows.
Note that by definition, φ(x) ⊆ X, ∀x ∈ X.
Next, we show that φ(x1, ..., xN) is a convex set. Suppose that

(z1, ..., zN), (v1, ..., vN) ∈ φ(x1, ..., xN).

Then, ∀ui
s, and s ∈ S, i ∈ I,

f(x−i
s , z

i
s;ω

i) = f(x−i
s , v

i
s;ω

i)

≤ f(x−i
s , u

i
s;ω

i)

Hence, for any λ ∈ [0, 1] and ∀i ∈ I, s ∈ S,

λf(x−i
s , z

i
s;ω

i) + (1− λ)f(x−i
s , v

i
s;ω

i)

≤ f(x−i
s , u

i
s;ω

i)
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By the convexity of f(x−i
s , u

i
s;ω

i), we obtain

f(x−i
s , ((λ)zi

s + (1− λ)vi
s);ω

i)

≤ λf(x−i
s , z

i
s;ω

i) + (1− λ)f(x−i
s , v

i
s;ω

i)

≤ f(x−i
s , u

i
s;ω

i),

and hence,

(λ)(z1, ..., zN) + (1− λ)(v1, ..., vN) ∈ φ(x1, ..., xN).

Finally, we must show that φ(x1, ..., xN) is an upper semi-continuous cor-
respondence. (A good treatment of correspondences could be found in [27]
and [9], along with Kakutani’s fixed point theorem.)

Suppose for n = 1, 2, ...,

(x1,n, ..., xN,n) ∈ X,

(y1,n, ..., yN,n) ∈ φ(x1,n, ..., xN,n),

lim
n→∞

(x1,n, ..., xN,n) = (u1, ..., uN) ∈ X,

lim
n→∞

(y1,n, ..., yN,n) = (q1, ..., qN) ∈ X.

Now, ∀ri
s ∈ X i

s, s = 1, ...,M ,

f(x−i,n
s , yi,n

s ; β(x−i,n)) ≤ f(x−i,n
s , ri

s; β(x−i,n)).

It follows by the continuity of f(x−i
s , u

i
s;ω

i) and by Lemma 4 that,

lim
n→∞

f(x−i,n
s , yi,n

s ; β(x−i,n)) = f(u−i
s , q

i
s;ω

i
s)

≤ f(u−i
s , r

i
s;ω

i
s) = lim

n→∞
f(x−i,n

s , ri
s; β(x−i,n)),

therefore,
(q1, ..., qN) ∈ φ(u1, ..., uN),

which completes the proof that φ is an upper semi-continuous correspon-
dence.

Note that φ is an upper semi-continuous correspondence that maps the
closed, bounded, and convex setX into the family of closed, convex subsets of
X. Therefore, φ satisfies the assumptions of Kakutani’s fixed point theorem
and the proof is complete. 2
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5 Calculation of an Equilibrium Point

In general-sum n-person stochastic games, one cannot capture the fully an-
tagonistic intentions of the players. Nevertheless, completely antagonistic
goals make sense in the two-person zero-sum case, a special case of general-
sum n-person stochastic games. In such games, a player’s (usually player
1) gain is the cost to the other player (usually player 2). Hence, there is
a complete utility transfer from one player to the other and payoffs to the
players sum up to zero.

Let ω(x1,x2) denote the value of the game to player 2, induced by arbitrary
stationary strategies (x1, x2). Now that ω1

(x1,x2) = −ω2
(x1,x2) in the zero-sum

case, similar to nominal stochastic games (with known parameters), equilib-
rium conditions for robust two-person zero-sum stochastic games (condition
8) reduce to

ω(x1,x∗2) ≤ ω(x∗1,x∗2) ≤ ω(x∗1,x2), (12)

where ω(x∗1,x∗2) denote the optimal value of the game, induced by the opti-
mal stationary strategies (x∗1, x∗2). In this section, we extend the nonlinear
programming formulations for two-person zero-sum stochastic games given
by Filar and Vrieze (1997) to the programs for robust two-person zero-sum
stochastic games. Now, as we have seen in the previous section, we have the
following for robust stochastic games, where ωs is used to represent robust
value of the game to player 2 starting in state s. We should bear in mind
that any cost incurred to player 2 is a gain to player 1.

ωs = min
x2

s∈S2
s

max
C̃

2
sas∈C2

sas

P̃sask∈Psask

ψ2
s(C̃

2

sas
, P̃sask;x

1
s, x

2
s;ω)

or

ωs = min
x2

s∈S2
s

max
C̃

2
sas∈C2

sas

P̃sask∈Psask

∑
as∈As

x1
s,a1

s
x2

s,a2
s
{C̃2

sas
+ β

M∑
k=1

P̃saskωk}

=
∑

as∈As

x1
s,a1

s
x∗2s,a2

s
{C∗2

sas
(x1

s, x
∗2
s ) + β

M∑
k=1

P ∗
sask(x

1
s, x

∗2
s )wk},

where, optimizers C∗2
sas

and P ∗
sask now depend on strategies. Consider the
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right hand side.

∑
as∈As

x1
s,a1

s
x∗2s,a2

s
{C∗2

sas
(x1

s, x
∗2
s ) + β

M∑
k=1

P ∗
sask(x

1
s, x

∗2
s )wk}

=
∑

as∈As

x1
s,a1

s
x∗2s,a2

s
C∗2

sas
(x1

s, x
∗2
s )+

β

M∑
k=1

(
∑

as∈As

x1
s,a1

s
x∗2s,a2

s
P ∗

sask(x
1
s, x

∗2
s )){

∑
ak∈Ak

x1
k,a1

k
x∗2k,ai

k
C∗2

kak
(x1

k, x
∗2
k )

+β
M∑

k′=1

∑
ak∈Ak

x1
k,a1

k
x∗2k,ai

k
P ∗

kask′(x
1
k, x

∗2
k )wk′}

=
∑

as∈As

x1
s,a1

s
x∗2s,ai

s
C∗2

sas
(x1

s, x
∗2
s )

+β
M∑

k=1

(
∑

as∈As

x1
s,a1

s
x∗2s,ai

s
P ∗

sask(x
1
s, x

∗2
s ))(

∑
ak∈Ak

x1
k,a1

k
x∗2k,ai

k
C∗2

kak
(x1

k, x
∗2
k ))

+β2

M∑
k=1

(
∑

as∈As

x1
s,a1

s
x∗2s,a2

s
P ∗

sask(x
1
s, x

∗2
s ))(

M∑
k′=1

∑
ak∈Ak

x1
k,a1

k
x∗2k,a2

k
P ∗

kask′(x
1
k, x

∗2
k )wk′).

The last term in the last equality could be rewritten as

β2

M∑
k=1

{(
∑

as∈As

x1
s,a1

s
x∗2s,ai

s
P ∗

sask(x
1
s, x

∗2
s ))

M∑
k′=1

(
∑

ak∈Ak

x1
k,am

k
x∗2k,ai

k
P ∗

kask′(x
1
k, x

∗2
k ))wk′},

where there is a single number in each of the two most inner parenthesis.
The inner parentheses are in fact one-step transition probabilities in their
respective uncertainty sets from one state to the other, induced by the mixed
strategies of the players in state s. Let us denote the one step transition
probabilities induced by (x1

s, x
∗2
s ) by

Γ∗sask(x
1
s, x

∗2
s ) ∈ Psask, as ∈ As.
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Now, the last term could be rewritten as follows.

β2

M∑
k′=1

M∑
k=1

Γ∗sask(x
1
s, x

∗2
s )Γ∗kakk′(x

1
k, x

∗2
k )wk′

= β2

M∑
k′=1

Γ∗
2

sask′(x
1, x∗2)wk′ ,

where Γ∗
2

sask′(x
1, x∗2) is the 2-step transition probabilities from s to k′. Note

that the first term in the RHS is in fact the expected immediate payoff. Let
the expected immediate payoff induced by (x1, x∗2) be denoted, in matrix
form, by

E2
s [C

∗(x1, u∗2)] =
[
x1

s,a1
s
x∗2s,ai

s
C∗2

sas
(x1

s, x
∗2
s )

]m1
s,m2

s

a1
s=1,a2

s=1
.

Let

P ∗(x1, x∗2) =

[ ∑
as∈As

x1
s,a1

s
x∗2s,a2

s
P ∗

sask(x
1
s, x

∗2
s )

]M, M

s=1,k=1

.

Define the following M × 1 vector:

E2[C∗(x1, x∗2)] =
[
1TE2

s [C
∗(x1, x∗2)]1

]M

s=1
,

where 1 is a vector of ones of the appropriate dimension. Using this notation,
the RHS reduces to the following in matrix notation.

E2[C∗(x1, x∗2)] + βP ∗(x1, x∗2)E2[C∗(x1, x∗2)] + β2P ∗2(x1, u∗2)ω,

If we substituted the above equation into itself n times, we would have
obtained

ω = E2[C∗(x1, x∗2)] + βP ∗(x1, x∗2)E2[C∗(x1, x∗2)]

+β2P ∗2(x1, x∗2)E2[C∗(x1, x∗2)] + ...+ βnP ∗n

(x1, x2∗)ω.

Let n→∞ to obtain

ω(x1,x∗2) =
[
I − βP ∗(x1, x∗2)

]−1
E2[C∗(x1, x∗2)], (13)

where I is the M ×M identity matrix and ω(x1,x∗2) is the robust value of the
game to player 2, induced by strategies (x1, x∗2).

46

DRAFT



Suppose that players play with (x1, x∗2). Let Rt,(x1,x∗2), t = 0, 1, ... de-
note sequence of costs at each stage of the game. Then, starting in state s,
expected immediate cost at stages 0, 1, 2, ..., n would, in matrix form, be as
follows.

E2[R0,(x1,x∗2)] = E2[C∗(x1, x∗2)]

E2[R1,(x1,x∗2)] = P ∗(x1, x∗2)E2[C∗(x1, x∗2)]

E2[R2,(x1,x∗2)] = P ∗2(x1, x∗2)E2[C∗(x1, x∗2)]

.

E2[Rn,(x1,x∗2)] = P ∗n

(x1, x∗2)E2[C∗(x1, x∗2)]

Now, we can alternatively calculate the robust value of the game induced
by (x−i, x∗2) to player 2 starting in state s as follows.

ω(x1,x∗2) =
∞∑

t=0

βtE2[C∗(x1, x∗2)]P ∗t

(x1, x∗2)

= E2[C∗(x1, x∗2)] + βP ∗(x1, x∗2)E2[C∗(x1, x∗2)]

+β2P ∗2(x1, x∗2)E2[C∗(x1, x∗2)] + ...

= E2[C∗(x1, x∗2)]{I + βP ∗(x1, x∗2) + β2P ∗2(x1, x∗2) + ...,

where I is the M ×M identity matrix, and hence,

ω(x1,x∗2) = [I − βP ∗(x1, x∗2)−1E2[C∗(x1, x∗2)],

which is same as the solution found in Eq (14). Now, suppose that for the
arbitrary robust value vector θi and arbitrary x we have

E2[C∗(x)] + βP ∗(x)θ ≤ θ.

Iterating the left-hand-side of the above equation into itself infinitely
many times, we obtain

E2[C∗(x)] + βP ∗(x)E2[C∗(x)] + β2P ∗2(x)Ei[C∗(x)] + ... ≤ θ.

Now, let n→∞ to obtain,
ω(x) ≤ θ,

and we see that the arbitrary robust value vector θ is an upper bound on the
value vector of the game induced by arbitrary x. This observation may lead
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us to an optimization problem, where we would like to minimize an arbitrary
(variable) robust value vector subject to some constraints that will prescribe
us robust equilibrium conditions (13).

Define

E2
s [C̃(x2)] =

[
x2

s,a2
s
C̃sas

]m1
s, m2

s

a1
s=1,a2

s=1
.

Define

T (s, θ) =

[∑
k∈S

P̃saskθk

]m1
s, m2

s

a1
s=1,a2

s=1

.

Claim: Consider the following uncertain nonlinear program (RNL1) in
matrix form, bearing in mind that w and x2 are the decision variables and
the superscript denotes player 2:

min
M∑

k=1

ωk

s.t.
max

C̃sas∈Csas

E2
s [C̃(x2)]1 + β max

P̃sask∈Psask

T (s, ω)x2
s ≤ ωs1,∀s ∈ S (14)

(x1
s, x

2
s) ∈ S1

s × S2
s , ∀s ∈ S,

where 1 is a vector of ones of appropriate dimension, and ω and x2 represent
an arbitrary (variable) robust value vector (for player 2) and an arbitrary
(variable) robust stationary strategies. Let ω∗(x∗1,x∗2) and x∗2 be the opti-
mal robust value vector and robust optimal stationary strategy for player 2,
respectively. Then, ω∗ and x∗2 form a global minimum of RNL1.

Proof. By the existence theorem for robust stochastic games proved
in the previous section, ω∗ and x∗2 exist. Multiply the objectives to be
maximized in (15) from the left by arbitrary x1

s to get

max
C̃sas∈Csas

[
x1

s

]T
E2

s [C̃(x∗2)]1 + β max
P̃sask∈Psask

[
x1

s

]T
T (s, ω∗)x∗2s

≤ [x1
s]

Tω∗s1,∀s ∈ S,

which, since C̃ and P̃ belong to bounded sets, could be rewritten as

E2[C∗(x1, x∗2)] + βP ∗(x1, x∗2)ω∗ ≤ ω∗,
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where C∗(x1, x∗2) and P ∗(x1, x∗2) are optimizers that depend on strategies
(x1, x∗2). Iterate the above equation into itself infinitely many times to get

ω∗(x1,x∗2) ≤ ω∗,

which holds by condition (13). Therefore, ω∗ and x∗2 form a feasible point.
Now suppose that ω and x2 form an arbitrary feasible point. If we follow

the above procedure by multiplying the constraint by an arbitrary x1, we
obtain

E2[C∗(x1, x2)] + βP ∗(x1, x2)ω ≤ ω

By the same iterative procedure we obtain

ω(x1,x2) ≤ ω, ∀x1 ∈ S1,

which also holds with x∗1 since x1 is arbitrary, that is,

ω(x∗1,x2) ≤ ω.

But by (13), we also have

ω(x∗1,x∗2) ≤ ω(x∗1,x2) ≤ ω.

The proof is now complete, since ω is arbitrary and equilibrium points exist
by the existence theorem for robust stochastic games. 2

5.1 Preliminary Results

5.1.1 A Small Numerical Example

Example 1: Consider the robust stochastic game in Figure 1.

&%
'$

�

&%
'$?

' $

& %
-

6

1 2

P̃11, P̃12, C1

P21, P22, C2

Figure 1. Robust Stochastic Game Example 1
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In this example, we interpret states as threat categories and actions in each
state as alternatives. In Figure 1, the uncertain probability transition matri-
ces P̃1j, j = 1, 2, and other certain transition matrices are as follows.

P̃12 =

(
(0.3, 0.7) (0.4, 0.7)

0 0

)
, P21 = [0.5] , P22 = [0.5]

P̃11 =

(
(0.4, 0.8) (0.2, 0.5)

1 1

)
.

We label the rows of P11 and P12 by a and b, respectively, to denote the
alternatives of player 1. We label their columns by c and d, to represent
alternatives of player 2. Hence, in the second state, each player has one
alternative that we label by e and f for player 1 and player 2, respectively.
Whenever there is a vector as an entry of the above matrices, we mean that
the corresponding transition probability is uncertain but is within the upper
and lower bounds defined by the entries of that vector. For example, if players
choose alternatives a and d in state 1, then the lower bound on the transition
probability to state 1 again is 0.2. The upper bound in this case is 0.5. If
players choose a and c in state 1, then the game moves into state 2 with a
lower bound of 0.3 and an upper bound of 0.7. If there is a scalar as an entry
of any matrix, this means that the corresponding transition probability is
known with certainty.

In this example, for simplicity, we define the uncertainty set for transition
probabilities simply to be the convex hull of lower and upper bounds defined
in the above matrices. This implies that the uncertain transition probabilities
could be any convex combinations of lower and upper bounds. We observe
that an uncertain probability not necessarily attains its respective upper or
lower bound. In other words, the probabilities that maximize the expected
cost to be minimized by player 2 are convex combinations of the bounds.
Therefore, the set we consider for probabilities are, ∀s ∈ S, k ∈ S,∀as ∈ As,
as follows.

Psask = {P̃ = P 0
sask +

2∑
l=1

λl
saskP

l
sask | λl

sask ≥ 0,
2∑

l=1

λl
sask ≤ 1}.

Note that in our model, P 0
sask are all equal to zero for simplicity. However, we

could have modeled this example by determining two bounds and a nominal
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probability P 0, and then by requiring the uncertain probabilities to belong
to the convex hull of these three values.

We will also demonstrate later in this research that these probabilities
could be obtained by a suitably constructed linear program, as an outcome
of the nonlinear program given below.

For simplicity, we assume that the immediate costs in this example are
known with certainty. Let

C1 =

(
4 6
7 3

)
, C2 = [2],

where labels on the rows and columns of C1 and C2 are the same as any
probability transition matrix out of state 1 and 2, respectively. The entries
in the matrices denote the immediate costs to player 2 that correspond to
the actions taken. For example, if a and d are chosen by the players in state
1, then player 2’s cost is 6 units.

The nonlinear program RNL1 for Example 1, is as follows. Note that
the following formulation is small since some transitions are assumed to be
certain in Example 1.

minω1 + ω2

s.t.

∑
a2

s∈A2
s

Cs(a1
s,a2

s)x
2
s,a2

s
+β max

P̃∈Ps(a1,a2)k

M∑
k=1

∑
a2

s∈A2
s

P̃s(a1,a2)kx
2
s,a2

s
ωk ≤ ωk,∀s ∈ S,∀a1

s ∈ A1
s

(x1
s, x

2
s) ∈ S1

s × S2
s , ∀s ∈ S

Next, we rewrite the above by considering the uncertainty set that the prob-
abilities belong to, and by appending the additional constraints that define
the uncertainty set.

RNL2 := minω1 + ω2

s.t.
max

λl, l=1,2

∑
a2

s∈A2
s

Cs(a1
s,a2

s)x
2
s,a2

s

+β
M∑

k=1

∑
a2

s∈A2
s

(
2∑

l=1

λl
saskP

l
sask)x

2
s,a2

s
ωk ≤ ωs, ∀s ∈ S,∀a1

s ∈ A1
s
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2∑
l=1

λl
sask ≤ 1

λl
sask ≥ 0, l = 1, 2

(x1
s, x

2
s) ∈ S1

s × S2
s , ∀s ∈ S

M∑
k=1

(
2∑

l=1

λl
saskPsask) = 1, ∀s ∈ S,∀as ∈ As

Now, it is important to note that uncertain probabilities out of any given
state must sum up to 1. Hence, we must add the last constraint above that
captures this requirement.

Consider the inner maximization problems:

max
λl, l=1,2

∑
a2

s∈A2
s

Cs(a1
s,a2

s)x
2
s,a2

s

+β
M∑

k=1

∑
a2

s∈A2
s

(
2∑

l=1

λl
saskP

l
sask)x

2
s,a2

s
ωk ≤ ωs, ∀s ∈ S,∀a1

s ∈ A1
s

s.t.

M∑
k=1

(
2∑

l=1

λl
saskPsask) = 1, ∀s ∈ S,∀as ∈ As (15)

2∑
l=1

λl
sask ≤ 1, ∀s ∈ S,∀as ∈ As (16)

λl
sask ≥ 0, l = 1, 2, ∀s ∈ S,∀as ∈ As

The number of inner maximization problems is equal to the cardinality |A1
s|

at state s. Note that the constraints are linear in λ. We next associate the
dual variables corresponding to (16) and (17).

(16) → µs(a1
s,a2

s), ∀s ∈ S,∀as ∈ As,

(17) → µs(a1
s,a2

s)k, ∀s, k ∈ S,∀as ∈ As,
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and write the set of duals D1 as follows.

min
∑

a2
s∈A2

s

µs(a1
s,a2

s) +
M∑

k=1

∑
a2

s∈A2
s

µs(a1
s,a2

s)k

≤ ωs −
∑

a2
s∈A2

s

Cs(a1
s,a2

s)x
2
s,a2

s
, ∀s ∈ S,∀a1

s ∈ A1
s

s.t.
P l

s(a1
s,a2

s)kµs(a1
s,a2

s) + µs(a1
s,a2

s)k ≥

βP l
s(a1

s,a2
s)kx

2
s,a2

s
ωs, l = 1, 2,∀s, k ∈ S,∀a1

s ∈ A1
s,∀a2

s ∈ A2
s

µs(a1
s,a2

s)k ≥ 0,∀s, k ∈ S,∀a1
s ∈ A1

s,∀a2
s ∈ A2

s.

Substituting D1 into RNL2, we obtain the following.

RNL3 := minω1 + ω2

s.t.

∑
a2

s∈A2
s

µs(a1
s,a2

s)+
M∑

k=1

∑
a2

s∈A2
s

µs(a1
s,a2

s)k ≤ ωs−
∑

a2
s∈A2

s

Cs(a1
s,a2

s)x
2
s,a2

s
, ∀s ∈ S,∀a1

s ∈ A1
s

P l
s(a1

s,a2
s)kµs(a1

s,a2
s) + µs(a1

s,a2
s)k ≥

βP l
s(a1

s,a2
s)kx

2
s,a2

s
ωs, l = 1, 2,∀s, k ∈ S,∀a1

s ∈ A1
s,∀a2

s ∈ A2
s

µs(a1
s,a2

s)k ≥ 0,∀s, k ∈ S,∀a1
s ∈ A1

s,∀a2
s ∈ A2

s.

Returning to our example, note that it only has uncertain transition prob-
abilities in state 1 and they are only associated with our opponent’s alter-
native a. Therefore, RNL3 results only in one dual problem with additional
original formulation constraints corresponding to alternatives and states with
certain data. Using the data as given above, RNL3 is numerically as follows.

minω1 + ω2

s.t.

µ1ac + µ1ad + µ1ac1 + µ1ac2 + µ1ad1 + µ1ad2 ≤ w1 − 4x2
1c − 6x2

1d
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0.4µ1ac + µ1ac1 ≥ 0.3x2
1cw1

0.8µ1ac + µ1ac1 ≥ 0.6x2
1cw1

0.3µ1ac + µ1ac2 ≥ 0.225x2
1cw2

0.7µ1ac + µ1ac2 ≥ 0.525x2
1cw2

0.2µ1ad + µ1ad1 ≥ 0.15x2
1dw1

0.5µ1ad + µ1ad1 ≥ 0.375x2
1dw1

0.4µ1ad + µ1ad2 ≥ 0.3x2
1dw2

0.7µ1ad + µ1ad2 ≥ 0.525x2
1dw2

µ1ac1 ≥ 0, µ1ac2 ≥ 0, µ1ad1 ≥ 0, µ1ad2 ≥ 0

7x2
1c + 3x2

1d + (0.75)1w1x
2
1c + (0.75)1w1x

2
1d ≤ w1

2x2
2f + (0.375)x2

2fw2 + (0.375)x2
2fw1 ≤ w2

x2
1c >= 0, x2

1d ≥ 0, x2
2f ≥ 0

x2
1c + x2

1d = 1

x2
2f = 1.

Example 1 is the perturbed version of the same example with certain
(nominal) transition matrices as follows.

P12 =

(
0.4 0.666
0 0

)
, P21 = [0.5] , P22 = [0.5]

P11 =

(
0.6 0.333
1 1

)
.

This nominal problem has the following nonlinear formulation that is
presented here using the (nominal) formulations in [16].

minω1 + ω2

s.t.

4x2
1c+6x2

1d+0.75(0.6)ω1x
2
1c+0.75(0.4)ω2x

2
1c+0.75(0.333)ω1x

2
1d0.75(0.666)ω2x

2
1d ≤ ω1;

7x2
1c + 3x2

1d + 0.75(1)ω1x
2
1c + 0.75(1)ω1x

2
1d ≤ ω1
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Table 1: Solutions to nominal and robust stochastic games
Decision Variables Nominal Stochastic Game Robust Stochastic Game

objective value 28.96241 30.50092
ω1 16.10151 17.06308
ω2 12.86090 13.43785
x2

1c 0.2563442 0.3164422
x2

1d 0.7436558 0.6835578
x2

2f 1 1

µ1ac NA 3.189226
µ1ac NA 6.889158
µ1ac1 NA 0.6883055
µ1ac2 NA 0
µ1ad1 NA 0.9292704
µ1ad2 NA 0

global optimal 28.96241 30.50092
local optimal 28.96241 30.50092

2x2
2f + 0.375x2

2fω2 + 0.375x2
2fω1 ≤ ω2

x2
1c ≥ 0, x2

1d ≥ 0, x2
2f ≥ 0

x2
1c + x2

1d = 1, x2
2f = 1

The above problems are solved using the nonlinear (convex, nonconvex)
optimization software LINGO. Table 1 depicts the optimal values associated
with the nominal and the robust stochastic game solutions.

Some observations on Table 1 are in order:

1. First and foremost, it is a result that every local optima in a nominal
stochastic game is also a global optima. Hence, global and local optimal
values for a nominal stochastic game coincide. We see in the above table
that global and local optimal values for our robust example coincide. A
natural question that needs attention is whether the same nice property
for nominal problems holds for robust stochastic games.

2. We note in the robust stochastic game formulation section that Propo-
sition 1 must hold. It holds for our example, raising the question of
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formally proving this property.

3. It is possible to obtain the values for uncertain parameters the robust
model uses, using the dual variables in Table 1, and constructing a
suitable linear program.

4. The optimal strategies for the two problems differ. Robust solutions
suggest player 2 to put slightly more emphasis on his first alternative,
and consequently, a little less prominence on his second alternative in
state 1.

5. The change in optimal strategies in this example could be deemed to
be small. Suppose that our decision maker in this example interprets
optimal strategy values as percentages and wishes to allocate her funds
to his alternatives based on these measures. The difference between
her first alternatives in state 1 is 0.060098. Clearly, given that the
investments could be at very significant monetary magnitudes, even
very small changes in the output of this small model could result in
significant changes in investment decisions.

6. Risk is defined as the multiplication of likelihood of an event and its
severity. Using suitable interpretations and assumptions, we could cal-
culate risk readily from this model as follows. One could run the under-
lying Markov chain in Example 1 starting with the transitions matrix
induced by the optimal strategies of the opponents. Limiting proba-
bilities in each state then could be multiplied by the optimal strategy
values obtained from our nonlinear robust optimization model for each
state to obtain risk values.

5.1.2 More Analysis in Example 1

We next consider uncertain immediate costs in state 1, when player 1 chooses
to play with his alternative a. Immediate cost data is now as follows.

C1 =

(
(2, 7) (4, 10)

7 3

)
, C2 = [2].
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Table 2: Robust vs Nominal Worst Case Solutions
Decision Variables Robust Game Nom. W-Case Perf. Perc Saving

objective value 43.2215 46.08051 6.6 %
ω1 25.0134 26.8003 7.1 %
ω2 18.2080 19.2801 5.8 %
x2

1c 0.8133 0.2563 NA
x2

1d 0.1866 0.7436 NA
x2

2f 1 1 NA

Similarly, uncertain immediate costs are assumed to belong to convex com-
binations of their respective lower and upper bounds. That is, we have

Csas = {C̃ = C0
sas

+
2∑

l=1

τ l
sas
C l

sas
| τ l

sas
≥ 0,

2∑
l=1

τ l
sask ≤ 1}.

It is assumed that C0
sas

= 0, ∀s ∈ S, as ∈ As. This version of the problem
is solved using duality and similar arguments used in the previous version.
The data and the solution for the nominal game in this version is the same
as in the previous one. Results are summarized in Tables 2 and 3. Robust
Game column in Table 2 refers to the solution of the robust stochastic game
with given uncertain immediate costs and transitions probabilities. The next
column refers to the performance of the nominal solution when parameters
attain their worst-case values with respect to it. The worst-case parameter
values with respect to the nominal solution are obtained from a suitably
constructed linear program that could be extracted from the program to
solve the new version of Example 1. Percentage savings resulting from the
use of the robust solution versus the use of nominal solution under worst-case
data scenarios are depicted in the last column.

Table 3 depicts the performance of the robust solution when data is cer-
tain. If the data were certain and had we adopted the robust solution, re-
sulting percentage loss values due to the use of the robust solution under
the nominal data scenario are presented in the last column. We see in this
example that the percentage savings are higher than respective percentage
losses. It is important also to note that uncertainty is present in a small
portion of the data defining this example. It is reasonable to expect that
more significant savings could result in a model with fully uncertain data.
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Table 3: Performance of Robust Solution under Nominal Data
Decision Variables Nom Game Rob Perf w/ Nom Data Perc Loss

objective value 28.9624 30.4927 5.3 %
ω1 16.1015 17.0579 5.9 %
ω2 12.8609 13.4347 4.4 %
x2

1c 0.2563 0.8133 NA
x2

1d 0.7436 0.1866 NA
x2

2f 1 1 NA

6 Conclusions

Challenges in modeling homeland security related decision making problems
arise from the antagonistic character inherent in the problem and the uncer-
tainty associated with it. The uncertain adaptive behaviour of the attacker
in such problems requires a modeling technique that could also capture the
uncertainty inherent in the problem. In most cases, point estimate values
are not easy to obtain from experts. For instance, it is very natural that an
expert would be much more comfortable to give intervals of probabilities and
costs, rather than giving single numerical values. The transition probabilities
from a given threat to the other based on the decisions made and the costs
of these decisions are difficult to predict. The new technique introduced in
this report suggests a way to cope with such uncertainties and also accounts
for the antagonism in the problem.

This report demonstrates existence of equilibrium points in robust sto-
chastic games and suggests a computation method based on duality. This
method is demonstrated on a small numerical example and results are sum-
marized. It is observed in this small example that the percentage savings
resulting from using robust strategies versus the nominal strategies when the
parameters attain their worst-case values are higher than the losses caused
by using robust strategies when parameters attain their nominal values. It
is also observed that compared to the uncertainty in transition probabilities,
uncertainty in immediate costs has a greater effect on the value of the game.

The future work in this research includes a quantified model of the MAN-
PADS case study. A qualitative model that includes defined state-action pairs
for a two player zero-sum robust stochastic game is in development phase.
MANPADS model is proposed to be quantified via expert elicitation. The
next step after developing the model is the computation of the robust optimal
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strategies.
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